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Methods appendix to Measuring progress and projecting attainment on 
the basis of past trends of the health-related Sustainable Development 
Goals in 195 countries and territories: an analysis from the Global Burden 
of Disease Study 2017  

This appendix provides further methodological detail for the health-related Sustainable 
Development Goals. The appendix is organized into broad sections following the structure of the 
main paper. 
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List of Supplementary Results: Figures and Tables 

Supplemental figures and tables providing more detailed results can be found in the 
supplementary results appendix.  

Supplementary figure 1 . Census or population registry status and coverage of a population and housing 
census within the last 10 years, by location, from 1990-2017. Per SDG indicator 17.19.2a, the target is that 
each country is to have conducted a population and housing census in the last 10 years, or have a 
population registry from which detailed population and housing statistics are derived. Census years are 
designated by a dark blue colouring, followed by a lighter blue colour indicating census coverage for the 9 
years following a census for a total of 10 years of census coverage. A medium blue colour is used to 
designate the implementation of a population registry. White indicates that a given location-year is not 
covered by a population and housing census or population registry. Census status for 1990-2000 was 
informed by census conducted from 1980-1989, which are not shown here. SDG=Sustainable 
Development Goal. 

Supplementary figure 2. Map of health-related SDG index, by decile, in 1990, 2000, and 2017 for Japan (A), 
Sweden (B), England (C), USA (D), Mexico (E), Brazil (F), India (G), and Kenya (H). Deciles were based on the 
distribution of health-related SDG index values for countries and territories in 2017, as found in figure 
2 of the main text, and then were applied for subnational locations over time. SDG=Sustainable 
Development Goal. 

Supplementary figure 3. Projected performance, based on past trends, on the health-related SDG index and 
40 individual health-related indicators, by country or territory, 2030. All projections were based on past 
trends and rates of change observed from 1990 to 2017. Countries are ranked by their health-related 
SDG index from highest to lowest in 2030, which was projected based on past trends. Indices and 
individual indicators are reported on a scale of 0 to 100, with 0 representing the worst levels from 1990 
to 2030 and 100 reflecting the best during that time. SDG indicator 17.19.2a, population census status 
within the last 10 years, was not included in the health-related SDG index as projections were not 
generated for this indicator. Definitions of health-related SDG indicators are shown in table 1 in the main 
manuscript. SDG=Sustainable Development Goal. SDG=Sustainable Development Goal. Mort=mortality. 
Mat Mort Ratio=maternal mortality ratio; Skill Birth Attend=skilled birth attendance. Incid=incidence. 
Prev=prevalence. TB=tuberculosis. Hep B=hepatitis B. NTD=neglected tropical diseases. NCD=non-
communicable disease. Inj=injury. FP Need Met, Mod=family planning need met with modern 
contraception methods. Adol=adolescent. UHC Serv Cov Index=universal health coverage, service 
coverage index. Air Poll=air pollution. WaSH=water, sanitation, and hygiene. Cov=coverage. Int=intimate. 
Viol=violence. HH=household. Occ=occupational risk. PM2.5= particulate matter smaller than 2.5 microns 
in diameter. Cert Death Reg=well-certified death registration. 

Supplementary figure 4. Comparing attainment of defined health-related SDG indicator targets in 2017 and, 
based on past trends, projected to be attained in 2030, by country. Countries and territories are ranked by 
the number of SDG indicator targets they were projected to attain based on the mean estimate for 2030. 
All projections were based on past trends and rates of change observed from 1990-2017. Of the 41 
health-related indicators measured in this study, 25 had defined targets linked to each indicator. SDG 
target 3.6 aims to reduce road injury mortality by 50% between 2015 and 2020, and thus attainment for 
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this indicator is based on estimates from 2015 to 2020 rather than 2015 to 2030. Definitions of health-
related SDG indicators and targets associated with them, as well as the specific target thresholds applied, 
are shown in table 1 in the main manuscript. SDG=Sustainable Development Goal. Mort=mortality. Mat 
Mort Ratio=maternal mortality ratio; Skill Birth Attend=skilled birth attendance. Incid=incidence. 
Prev=prevalence. TB=tuberculosis. NTD=neglected tropical diseases. NCD=non-communicable disease. 
Inj=injury. FP Need Met, Mod=family planning need met with modern contraception methods. UHC Serv 
Cov Index=universal health coverage, service coverage index. Air Poll=air pollution. WaSH=water, 
sanitation, and hygiene. Cov=coverage. Int=intimate. Viol=violence. HH=household. Cert Death Reg=well-
certified death registration. 
 
Supplementary figure 5. Global annualised rate of change required to meet selected SDG targets based on 
annualised rate of change achieved by countries from 1990−2015 for selected SDG indicators with defined 
targets: well-certified death registration, child overweight, child sex abuse, child stunting, child wasting, 
hygiene, intimate partner violence, malaria incidence, neonatal mortality, non-intimate partner sexual 
violence, NTD prevalence, road injury mortality, sanitation, skilled birth attendance, suicide mortality, and 
water. For the 25 SDG indicators with defined targets, the global ARC required to meet each target was 
computed using the global average in 2015 and specific thresholds to be met by 2030 or relative 
reductions to be achieved by 2030. SDG target 3.6 aims to reduce road injury mortality by 50% between 
2015 and 2020, and thus the global ARC is based on the time span from 2015 to 2020 rather than 2015 to 
2030. Global ARCs are compared with the ARCs achieved across countries and territories from 1990-2015. 
The best-performing decile of ARC is shown compared to all other deciles against the global ARC required 
to meet the defined SDG target. A subset of SDG indicators with defined targets are shown in figure 6 in 
the main manuscript; the remaining plots are shown here. Definitions of health-related SDG indicators 
and targets associated with them are shown in table 1 in the main manuscript. ARC=annualised rate of 
change. SDG=Sustainable Development Goal. 
 
Supplementary figure 6. Comparing 2016 values on the health-related SDG index from GBD 2016 to 2017 
values on the health-related SDG index from GBD 2017. Countries are colour-coded by SDI quintile, and 
are abbreviated according to their ISO3 codes, which are listed in the appendix. The 7 territories included 
for GBD 2017 are not shown since they were not included in previous GBD SDG analyses. 
SDG=Sustainable Development Goal. GBD=Global Burden of Disease. 
 
Supplementary figure 7. Comparing 2030 values on the health-related SDG index from GBD 2016 to 2030 
values on the health-related SDG index from GBD 2017. Countries are colour-coded by SDI quintile, and 
are abbreviated according to their ISO3 codes, which are listed in the appendix. The 7 territories included 
for GBD 2017 are not shown since they were not included in previous GBD SDG analyses. 
SDG=Sustainable Development Goal. GBD=Global Burden of Disease. 
 
Supplementary figure 8. Comparing 2016 rankings on the health-related SDG index from GBD 2016 to 2017 
rankings on the health-related SDG index from GBD 2017. Countries are colour-coded by SDI quintile, and 
are abbreviated according to their ISO3 codes, which are listed in the appendix. The 7 territories included 
for GBD 2017 are not shown since they were not included in previous GBD SDG analyses. 
SDG=Sustainable Development Goal. GBD=Global Burden of Disease. 
 
Supplementary table 1. Health-related SDGs excluded in the present analysis, and measurement needs and 
strategy for future reporting, by SDG target. Definitions and descriptions of health-related SDG indicators 
beyond the specific indicators originate from the IAEG-SDGs compilation of metadata for each SDG (as 
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provided by each indicator's custodial agency). DAH=development assistance for health. 
DHS=Demographic and Health Survey. GBD=Global Burden of Disease. IAEG-SDGs=Inter-agency and 
Expert Group on SDG Indicators. IHR=International Health Regulations. ISIC=International Standard 
Industrial Classification. JEE=Joint External Evaluation. NCD=non-communicable diseases. 
SDG=Sustainable Development Goal. TRIPS=Agreement on Trade-Related Aspects of Intellectual Property 
Rights. UHC=universal health coverage. UN=United Nations. WHO=World Health Organization. 
 
Supplementary table 2. Health-related SDG index in 2000, 2015, 2017, and 2030, by country or territory. 
The health-related SDG index is reported on a scale of 0 to 100, with 0 representing the worst levels from 
1990 to 2030 and 100 reflecting the best during that time. SDG=Sustainable Development Goal. 
 
Supplementary table 3. Unscaled values for the 40 individual health-related SDG indicators in 2000, 2015, 
2017, and 2030, and projected percent change from 2015 to 2030, by country or territory. Projected 
estimates for 2030 were produced based on past trends and rates of change observed from 1990 to 
2017. Estimates are reported for each country and territory included in this analysis, and ordered by 
health-related SDG indicator followed by GBD super-region and region. SDG indicator 17.19.2a, 
population census status within the last 10 years, is not included here as projections were not generated 
for this indicator. All results from 1990 to 2017 for SDG indicator 17.19.2a can be found in supplementary 
figure 1. SDG=Sustainable Development Goal. GBD=Global Burden of Disease. 
 
Supplementary table 4. GATHER checklist of information that should be included in reports of global health 
estimates, with description of compliance and location of information for GBD 2017 SDG Capstone. 
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Preamble 
 
This appendix provides methodological detail, supplemental figures and tables, and more detailed results 
for the health-related Sustainable Development Goals (SDGs). The appendix is organized into broad 
sections following the structure of the main paper. This study complies with the Guidelines for Accurate 
and Transparent Health Estimates Reporting (GATHER) recommendations, and thus this appendix aims to 
be comprehensive and encyclopedic. It includes detailed tables, figures, indicator modeling write-ups and 
flowcharts, and information on data sourcing in an effort to maximize transparency in our estimation 
processes and provide a comprehensive account of analytical steps. Components of this document are 
the same as described in earlier GBD 2017 Capstone appendices but much more of this appendix are new 
text for the SDG Capstone. We intend this to be a living document, to be updated with each annual 
iteration of the Global Burden of Disease and in accordance with the 15 year timeline of the SDG cycle 
until their conclusion in 2030.  
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GATHER statement 
 
This study complies with the guidelines for Accurate and Transparent Health Estimates Reporting 
(GATHER) recommendations. We have documented the steps involved in our analytical procedures and 
detailed the data sources used in compliance with the Guidelines for Accurate and Transparent Health 
Estimates Reporting (GATHER).  
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Part 1. Health-related SDG indicators 
 
Section 1. Sustainable Development Goals overview  
In September 2015, the United Nations (UN) General Assembly established the Sustainable Development 
Goals (SDGs). The SDGs substantially broaden the development agenda beyond the MDGs and are 
expected to frame UN member state policies through 2030. In March 2018, the global SDG indicator 
framework was updated, now specifying 17 universal goals, 169 targets, and 232 indicators leading up to 
2030. Here we provide an analysis of 41 out of the 52 health-related SDG indicators based on data used 
and generated by the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017). 
 
Section 2. Health-related SDGs 
Health is a core dimension of the SDGs; the third SDG aims to “ensure healthy lives and promote 
wellbeing for all at all ages.” Health-related indicators are also present among ten of the other 16 goals. 
Across these 11 goals, there are 29 health-related targets with a total of 52 health-related indicators. 
 
Of the 52 health-related indicators included as part of the SDGs, estimates for 41 indicators, using 
consistent approaches built on systematic efforts to compile all available data, are included as part of the 
GBD study. In this paper, while acknowledging the continued debate about the structure and choices of 
SDG indicators, we use the GBD study to provide an assessment of the current status of these 41 health-
related SDG indicators, develop and compute a summary indicator of the health-related SDG indicators, 
and document historical trends. For GBD 2017, we produce projections based on past trends for the 
health-related SDGs through 2030 and examine projected attainment for defined SDG targets by 2030. 
We also conduct a global attainment benchmarking exercise, comparing the global required rates  
 
The GBD study is an annual effort to measure the health of populations at national, and selected sub-
national levels, from 1990 to the most recent year (2017 for GBD 2017). The GBD study produces 
estimates of mortality and morbidity by cause, age and sex as well as that attributable burden to a 
selected set of major risk factors. Many of the 50 health-related SDG indicators are produced as part of 
the GBD, and thus use the same statistical methods as those reported in the broader GBD study (ie, Cause 
of Death Ensemble model [CODEm] for causes of death;1,2 DisMod-MR for many nonfatal causes;3 
spatiotemporal Gaussian process regression [ST-GPR] for many risk factor exposures4,5). Elsewhere in this 
appendix, we outline the 10 SDGs, corresponding 25 health-related targets, and 41 health-related 
indicators included in this iteration of the GBD. Part 1. Section 3 of this appendix also further outlines the 
definition of each indicator used in analysis, as well as the estimation method and data sources.  
 
Direct outputs of the GBD study that are health-related SDG indicators include mortality rates 
disaggregated by age (under-5 and neonatal) and cause of death (maternal, cardiovascular diseases, 
cancers, diabetes, chronic respiratory diseases, road injuries, self-harm, unintentional poisonings, 
exposure to forces of nature, interpersonal violence, and conflict and terrorism) as well as measures of 
disease incidence (HIV, malaria, tuberculosis [TB], hepatitis B) and prevalence (neglected tropical diseases 
[NTDs], nonfatal violence measures). The GBD risk factor analysis includes measurement of exposure 
prevalence included as health-related SDG indicators (under-5 stunting, wasting and overweight; tobacco 
smoking; harmful alcohol use; intimate partner violence and non-intimate partner sexual violence; unsafe 
water, sanitation, and hygiene [WaSH]; household air pollution; ambient particulate matter) as well as 
deaths or disease burden attributable to risk factors selected as health-related SDG indicators (WaSH, 
household and ambient air pollution, and occupational risks). In addition, a number of measures of 
intervention coverage, including skilled birth attendance, antenatal care, in-facility delivery rates, met 
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need for family planning with modern contraception methods, antiretroviral therapy, coverage of several 
vaccines, and health worker density per 1,000 are produced within the GBD study. Two additional health-
related SDG indicators, well-certified death registration and population census status, are derived from 
broader GBD estimation processes and databases (ie, causes of death and population). 
 
As noted in Table 1 in the main manuscript, for selected SDG indicators, we made modifications to the 
definition for clarity and/or based on the definition used in GBD. For example, Indicator 2.2.2 proposes to 
measure of malnutrition that combined prevalence of wasting and overweight among children under 5. 
As childhood wasting and overweight have very different determinants, effects on health outcomes, and 
interventions, we have selected to report them separately. For childhood overweight, we report 
prevalence among children aged 2 to 4 years, the definition used in GBD based on thresholds set by the 
International Obesity Task Force (IOTF). 
 
Three indicators have been added for the GBD 2017 analysis: health worker density per 1,000 (Indicator 
3.c.1), sexual violence by non-intimate partners (SDG indicator 5.2.2), and census status (SDG indicator 
17.19.2a). In addition, SDG indicator 16.1.3 was disaggregated into prevalence of physical violence 
(16.1.3a) and sexual violence (16.1.3c) following the March 2018 refinements accepted by the UN 
Statistical Commission. We thus report on these indicators separately rather than the combined 
prevalence of physical and sexual violence, resulting in a net gain of four health-related SDG indicators for 
GBD 2017. 
 
Further details on the estimation used for all indicators, compliant with Guidelines for Accurate and 
Transparent Health Estimates Reporting (GATHER), are included in Appendix Part 1. Section 3. Indicator-
specific estimation. 

 
Section 3. Indicator-specific estimation 
The indicator-specific modeling write-ups follow the order of the SDG goals, targets, and indicators 
established by the UN. In some cases, multiple indicators were addressed in a single write-up, for 
example mortality due to natural disasters (SDG indicators 1.5.1, 11.5.1, and 13.1.1) are included in a 
single write-up along with mortality due to conflict and terrorism (16.1.2). In other cases, particular 
measures may be present in multiple indicators (e.g., mortality due to cardiovascular diseases are 
included in SDG indicators 3.4.1 and 3.8.1); in these cases, we refer include these model write-ups for one 
indicator, and reference that indicator write-up as needed elsewhere. 
 
The organization of this section is as follows: 
 

Natural disaster mortality (1.5.1, 11.5.1, 13.1.1), conflict and terrorism mortality (16.1.2) 

Child stunting (2.2.1) and child wasting (2.2.2a) 

Child overweight (2.2.2b) 

Maternal mortality ratio (3.1.1.) 

Skilled birth attendance (3.1.2, also in the UHC service coverage index [3.8.1]) 

Under-5 mortality (3.2.1), neonatal mortality (3.2.2) 

HIV incidence (3.3.1) 
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TB incidence (3.3.2) 

Malaria incidence (3.3.3) 

Hepatitis B incidence (3.3.4) 

NTD prevalence (3.3.5) – includes 15 individual NTDs 

NCD mortality (3.4.1) - includes cardiovascular diseases, cancers, diabetes, and chronic respiratory 
diseases 

Self-harm mortality (3.4.2), road injury mortality (3.6.1), unintentional poisonings mortality (3.9.3), 
interpersonal violence mortality (homicide) (16.1.1) 

Alcohol use (3.5.2) 

Met need for family planning with modern methods (3.7.1, also in the UHC index [3.8.1]) 

Adolescent birth rate (3.7.2) 

Universal health coverage (UHC) service coverage index (3.8.1) –  includes coverage of three childhood 
vaccines, antenatal care (1 and 4 visits), in-facility delivery rate, antiretroviral therapy coverage, and risk-
standardized death rates from causes amenable to healthcare (3.8.1) 

Mortality attributable to household air pollution and ambient air pollution (3.9.1), household air 
pollution (7.1.2), and mean PM2.5 (11.6.2) 

Mortality attributable to WaSH (3.9.2), water (6.1.1), sanitation (6.2.1a), access to handwashing facility 
(6.2.1b) 

Smoking prevalence (3.a.1) 

Vaccine coverage (3.b.1) 

Health worker density (3.c.1) 

Prevalence of intimate partner violence (5.2.1), sexual violence by non-intimate partner (5.2.2), child 
sexual abuse (16.2.3), prevalence of physical or sexual violence (16.1.3a and 16.1.3c) 

DALY rates attributable to occupational risks (8.8.1) 

Population and housing census (17.9.2a) 

Well-certified death registration (17.19.2c) 
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1.5.1, 11.5.1, 13.1.1, and 16.1.2 Fatal Discontinuities SDG Capstone 
Appendix 

Input data & Methodological summary 

 

Input data

Process

Results

Database

Burden estimation

Cause of death

VR de-duplication

Run draws Age/sex splitting 
(not Ebola)

CoD data 
formatting and 
mapping (not 

Ebola)

Outlier removed 
VR points in CoD 

Database 

UCDP

IISS

Robert S. Strauss 
Center

EM-DAT
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from CoD Team

Conflict and 
terrorism

Exposure to forces 
of nature

Other exposure to 
mechanical forces
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Fire, heat, and hot 
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Other transport 
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Research
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mapping

All-cause 
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VR file
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Fatal discontinuity 
estimates for other 
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Fatal discontinuity 
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1 Other exposure to mechanical forces; poisoning;  fire, heat, and hot 
substances; motor vehicle road injuries; and other transport injuries 

Combine fatal 
discontinuity 

estimates with 
CODEm models

Protein energy 
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Abbreviations:

UCDP – Uppsala Conflict Data Program
IISS – International Intitute for Strategic Studies
EM-DAT – International Disasters Database
GIDEON – Global Infectious Diseases and Epidemiology 
Network
CoD – Causes of Death

Diarrheal diseases

Meningococcal 
meningitis

GIDEON

WHO Global 
Health 

Observatory data

Fatal discontinuity 
estimates for 

epidemics

Ebola virus disease

Ebola outbreak 
sources

Global Terrorism 
Database

 

Indicator definition  

This modeling strategy encompasses indicators associated with mortality due to exposure to forces of 
nature (natural disasters): 1.5.1, 11.5.1, 13.1.1; and mortality due to conflict and terrorism: 16.1.2.  

Indicator 1.5.1  

As a component of SDG Goal 1. End poverty in all its forms everywhere, SDG Target 1.5., by 2030, build the 
resilience of the poor and those in vulnerable situations and reduce their exposure and vulnerability to 
climate-related extreme events and other economic, social and environmental shocks and disasters, is 
measured using SDG Indicator 1.5.1, deaths due to exposure to forces of nature per 100,000.  

Indicator 11.5.1  

As a component of SDG Goal 11. Make cities and human settlements inclusive, safe, resilient and 
sustainable, SDG Target 11.5, by 2030, significantly reduce the number of deaths and the number of 
people affected and substantially decrease the direct economic losses relative to global gross domestic 
product caused by disasters, including water-related disasters, with a focus on protecting the poor and 
people in vulnerable situations, is measured using SDG Indicator 11.5.1, deaths due to exposure to forces 
of nature per 100,000.  
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Indicator 13.1.1  

As a component of SDG Goal 13. Take urgent action to combat climate change and its impacts, SDG 
Target 13.1, strengthen resilience and adaptive capacity to climate-related hazards and natural disasters 
in all countries, is measured using SDG Health Index Indicator 13.1.1, deaths due to exposure to forces of 
nature per 100,000.  

Indicator 16.1.2  

As a component of SDG Goal 16. Promote peaceful and inclusive societies for sustainable development, 
provide access to justice for all and build effective, accountable and inclusive institutions at all levels, SDG 
Target 16.1, significantly reduce all forms of violence and related death rates everywhere, is measured 
using SDG Indicator 16.1.2, deaths due to conflict and terrorism per 100,000. 

 
Input data 
 
Overall 
Input data for fatal discontinuities are compiled a range of sources, including country vital registration 
(VR) data; international databases that capture several cause-specific fatal discontinuities; and 
supplemental data in the presence of known issues with data quality or representativeness, or time lags 
in reporting. A systematic literature review was not used to identify input data for fatal discontinuities, 
though some literature sources were identified through online supplemental research. Below we provide 
more detail on the different input data sources by sub-causes of fatal discontinuities. 

Subnational locations and population splitting 
In locations where we produced estimates at the subnational level for GBD 2017, deaths due to all fatal 
discontinuity causes were assigned to the relevant subnational location(s) when that information could 
be obtained either through country data sources (eg, VR) or through additional online research. In the 
rare case that no subnational location could be found, the deaths were split proportionally by population 
across all subnational locations. 

In locations that have experienced boundary changes or split from other locations that we currently 
estimate (eg, the former Yugoslavia, Czechoslovakia, the Soviet Union, Sudan and South Sudan), we split 
deaths due to events that occurred prior to boundary changes proportionally based on the populations 
residing within the boundaries of present-day locations unless we found documentation that clearly 
indicated whether the event and corresponding deaths occurred in one of the present-day GBD 2017 
locations. 

 
Choosing between multiple sources for same event 
Where multiple sources reported shock deaths for the same location-year-cause, a cause-specific 
prioritisation scheme was followed that reflected the available detail in the cause-specific datasets. For 
example, the Generalized Event Dataset from UCDP was prioritised above all other non-VR sources 
because it included detail on how deaths were distributed between multiple actors and locations in each 
conflict event. In most cases, VR from 4- or 5-star locations was used where available. In some cases, VR 
from 4- or 5-star locations was not chosen if there were well-known data-quality issues or discrepancies 
in the cause of death data reporting related to a particular event (eg, supplemental death data for 

13



Louisiana was used for Hurricane Katrina because of established data reporting issues). The process for 
prioritidation among various sources for location-year fatal discontinuities is described more in the 
Modelling strategy below. 
 
Major data sources other than country vital registration for each fatal discontinuity cause follow. 
 
Conflict and terrorism. In GBD 2016, data for conflict and terrorism came from the Uppsala Conflict Data 
Program (UCDP), International Institute for Strategic Studies, and Robert S. Strauss Center for 
International Security and Law. For GBD 2017, data from the Global Terrorism Database (GTD), the 
University of Chicago Suicide Attack Database, and the RAND Database of Worldwide Terrorism Incidents 
were used in addition to those used in GBD 2016. The table below provides details about the various 
datasets we utilised from these sources, the dates they were last accessed, and the years for which we 
used the data provided. Where these data sources reported deaths due to gang violence, the cause was 
re-mapped to physical violence by other means. Where these data sources reported deaths due to legal 
intervention, the cause was re-mapped to executions and police conflict. 
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Supplemental online research was conducted for recent conflicts where the databases above were not 
up to date. In addition, deaths due to conflict and terrorism in Iraq from 2003 to present were estimated 
using a combination of supplemental sources. The source found with the lowest number of deaths, Iraq 
Body Count2, was used as the lower bound of the uncertainty interval from 2003 to 2016. Estimates 
from the Iraq Mortality Study by Hagopian et al3 from 2003 to 2006, the deadliest years of the war, were 
used to scale deaths to generate the upper uncertainty interval limits using the following formula:  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠𝐺𝐺𝐺𝐺𝐺𝐺 2017,   ℎ𝑖𝑖𝑖𝑖ℎ =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼 ∙ �
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼

�
2003−2006

  

Data source name Date 
accessed 

Years of data 
downloaded 

Type of data included 

Uppsala Conflict Data Program1 

Georeferenced Event 
Dataset, Version 17.1 

1/16/2018 1989-2015 UCDP battles, non-state, and one-sided conflict 
deaths with the most disaggregated location 
information available 

PRIO Battles Deaths 
Dataset, Version 3.1 

1/16/2018 1970-1988 Armed conflict (civil wars, etc.) 

International Institute for Strategic Studies 
Armed Conflict Dataset 11/17/2016 1997-2016 Insurgency, Inter-state, Intra-state conflict deaths 

 
Robert S. Strauss Center For International Security And Law 
Armed Conflict Location 
and Event Dataset (ACLED) 

1/16/2018 1997-2016 Actions of opposition groups, governments, and 
militias in selected locations in Africa, Asia, and the 
Middle East specifying the exact location and date 
of battle events, transfers of military control, 
headquarter establishment, civilian violence, and 
rioting 

Social Conflict Analysis 
Database (SCAD) 

1/16/2018 1990-2016 Protests, riots, strikes, inter-communal conflict, 
government violence against civilians, and other 
forms of social conflict (covers Africa,  Latin 
America, and Asia) 

University of Maryland, Global Terrorism Database 

Global Terrorism 
Database (GTD) 

1/16/2018 1970-2016 Attacks aimed at attaining political, economic, 
religious, or social goal, includes evidence of 
intention to coerce, action was outside precepts of 
International Humanitarian Law.  

University of Chicago, Chicago Project on Security and Threats 
Suicide Attack Database 
(CPOST SAD) 

8/5/2017 1974-2016 Attacks in which an attacker kills him/herself in a 
deliberate attempt to kill others, includes only 
attacks perpetrated by non-state actors 

RAND National Security Research Division 
RAND Database of 
Worldwide Terrorism 
Incidents 

9/8/2017 1968-2009 Terrorism, defined by the nature of the act, not by 
the identity of the perpetrators or the nature of the 
cause; including violence, calculated to create 
fear/alarm, intended to coerce certain actions, 
motive is political, group, or individual 

15



We used the average ratio between IMS and IBC reported deaths between 2003 and 2006, multiplied by 
the number of deaths reported by the IBC. This high estimate was carried forward through 2017 under 
the assumption that the Iraq Body Count similarly undercounts the number of deaths due to the 
ongoing civil war in Iraq. The final, best estimate for conflict and terrorism deaths in Iraq from 2003 to 
2016 is the midpoint of the high and low estimates given above. 

We identified four major conflicts that were not represented in these databases: 1997 civil conflict in 
Albania4; 1971 genocide in Bangladesh5; 1972 genocide in Burundi6; and 1993 genocide in Burundi6. In 
these cases, we used literature sources in order to account for these fatal discontinuities.  

For country-years where multiple sources provided estimates, we prioritised sources in the following 
order: (1) country VR data, if death estimates were highest of all sources; (2) UCDP; (3) IISS; (4) country 
VR if death estimates were not the highest of all sources; (5) Robert Strauss Center; (6) Global Terrorism 
DB; (7) CPOST Suicide Attack Database; (8) online supplemental research. 

Exposure to forces of nature, other injury causes, and protein-energy malnutrition. The Centre for 
Research on the Epidemiology of Disasters’ International Disaster Database (EM-DAT) served as the 
primary non-VR source of fatal discontinuities due to exposure to forces of nature (ie, natural disasters); 
other transport injuries (eg, plane, train, and boat accidents); poisonings; fire, heat, and hot substances; 
other exposure to mechanical forces (eg, building collapse); and protein-energy malnutrition (ie, famine 
or severe drought). Data from EM-DAT were last accessed February 14, 2018. Supplemental online 
research was conducted for events where EM-DAT was not up to date. 

For country-years where multiple sources provided estimates, we prioritised sources in the following 
order: (1) country VR data, if data quality rating is 4 or 5 stars; (2) country VR data if data quality rating is 
less than 4 stars and death estimates were highest of all sources; (3) EM-DAT; (4) online supplemental 
research. Exceptions were made where it was clear that VR systems had been compromised by the 
event being measured.  

Meningococcal meningitis and diarrhoeal diseases. For GBD 2017, we included fatal discontinuities due 
to a subset of infectious diseases: meningococcal meningitis (or meningococcal infection) and diarrhoeal 
disease caused by cholera. These two infectious diseases were first included on the fatal discontinuity 
cause list for GBD 2016 because (1) their current modelling strategies with the Cause of Death Ensemble 
model (CODEm) do not optimally capture the potentially highly variable – or epidemic – mortality levels 
and trends characteristic of these two causes; and (2) they can contribute to significant total fatalities in 
a given location-year. Other infectious diseases for which the latter is true – high death rates in the 
presence of an outbreak or epidemic – are currently modelled with alternative cause of death methods 
(eg, natural history models for measles and yellow fever), which allow for greater variation year-over-
year if or when outbreaks occur. In future iterations of the GBD, we plan to revisit the inclusion criteria 
for infectious diseases as fatal discontinuities and develop more of an ensemble approach to modelling 
causes that can be both endemic (and thus result in more uniform levels and trends over time) and 
epidemic (and subsequently lead to rapid increases – and decreases – in deaths for a given location-
year).  

The Global Infectious Diseases and Epidemiology Network (GIDEON) served as the primary data source 
for collating cholera and meningococcal meningitis or meningococcal infection death reports.7,8 For any 
year in which cholera or meningococcal meningitis deaths were recorded in a country or territory 
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covered by the GBD, we directly extracted reported deaths from 1970 to 2016. When there were 
reporting gaps in cholera or meningococcal meningitis deaths over this period of time and the World 
Health Organization (WHO) annual cholera or meningitis reports had death reports for those years, we 
used the WHO reports. The primary exception were two major cholera outbreaks in Bangladesh – 1982 
to 1983 and 1991 – which were not captured by either GIDEON or WHO. As result, we used the EM-DAT 
records for the 1982–1983 outbreak and literature for the 1991 outbreak.9 For the Yemen Cholera 
outbreak in 2016 and 2017, we used estimates from local collaborators in the absence of other data 
sources. 

Ebola. Since GBD 2015, outbreaks due to Ebola virus disease have been estimated using the data and 
methods described in the Ebola write-up of this appendix and included in GBD death estimates in the 
same way as other fatal discontinuity causes.  
 
Modelling strategy  
All input data for fatal discontinuity causes were run through the causes of death data formatting and 
mapping process.  

VR de-duplication 

For injury causes that also have continuous background mortality and a CODEm model, a process was 
established to avoid duplication of fatal discontinuity deaths in the two models. First, location-years 
with fatal discontinuities data from non-VR sources were identified. If these location-cause-years also 
had VR death estimates that were greater than 40% higher than the immediately surrounding years and 
could be linked to a specific fatal discontinuity event, these years were marked as outliers in the VR data 
and the difference between the outlier year and the average of the surrounding years was included in 
the relevant cause in the fatal discontinuities database. The deaths from the identified events were 
subtracted from the all-cause VR estimates used in the all-cause mortality estimation process.  

Uncertainty analysis for input and draw-level input to age-sex splitting 

Uncertainty intervals for deaths due to conflict and terrorism were generated using UCDP high and low 
death estimates, except in the case of Iraq 2003–2016, as explained above. In cases where low and high 
estimates were not included in the available data, the regional average uncertainty interval was applied 
to the available death estimate across all fatal discontinuity causes.  

We assumed a log-normal distribution using mean death rates and standard error based on high and 
low estimates. In the case that standard error was less than 10e-8, the draws were set equal to the 
mean rate. 1,000 draws were sampled from this log-normal distribution. These 1,000 draws were then 
converted back to count space and used for final calculations of means and uncertainty intervals. 

Age-sex splitting 

All compiled data were run through the causes of death age-sex splitting process, except for where we 
had strong supplemental information on the age distribution of specific, large events, such as United 
States mortality in the Vietnam War and Iranian mortality from the Iran-Iraq conflict in the early 1980s. 

Changes from GBD 2016 
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GBD 2017 saw an effort to systematise the collection of up-to-date fatal discontinuity data through 
supplemental online research. New tools included use of Twitter to identify events not covered by other 
sources, most notably in identifying events that occurred recently (2016, 2017). This process resulted in 
a more comprehensive set of conflict and terrorism data for 2017, as well as large natural disasters not 
contained in EM-DAT or VR.  

For GBD 2017, efforts were also made to improve location tagging in raw data to the GBD location 
hierarchy using several approaches. Identifying the correct GBD location for each event is difficult, as 
reports of fatal discontinuities come in many formats, often with limited metadata. The approaches 
used for improving the location tagging included a) utilising the collaborator network to more accurately 
tag events to subnational locations when information in the data was scarce, b) automated matching 
with GBD location names, c) overlaying a spatial file of the most-detailed GBD geographies, d) geo-
coding using precise place names, and e) for events spanning multiple GBD locations, but without detail 
in the raw data, deaths were split using population.  

We completed a detailed review of the fatal discontinuity cause mappings for conflict and terrorism, 
police conflict and executions, using the text descriptions of each event when provided in the data. This 
exercise resulted in updating the GBD cause assigned for a number of events present in the GBD 2016 
analysis, which is one contributor in the differences seen in the GBD 2016 and GBD 2017 fatal 
discontinuity estimates.  
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2.2.1 and 2.2.2a Child Growth Failure Capstone Appendix 
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Input Data & Methodological Summary 
Indicator definition 

This modeling strategy encompasses indicators associated with child undernutrition: 2.2.1 and 2.2.2a. 

Indicator 2.2.1 

As a component of SDG Goal 2. End hunger, achieve food security, and improved nutrition, SDG Target 2.2, 
by 2030, end all forms of malnutrition, including achieving, by 2025, the internationally agreed targets on 
stunting and wasting in children under 5 years of age, and address the nutritional needs of adolescent 
girls, pregnant and lactating women and older persons, is measured using SDG Indicator 2.2.1, prevalence 
of stunting among children under 5 (lower than two standard deviations from the median height for age 
of the reference population). 

Indicator 2.2.2a 

As a component of SDG Goal 2. End hunger, achieve food security, and improved nutrition, SDG Target 2.2, 
by 2030, end all forms of malnutrition, including achieving, by 2025, the internationally agreed targets on 
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stunting and wasting in children under 5 years of age, and address the nutritional needs of adolescent 
girls, pregnant and lactating women and older persons, is measured using SDG Indicator 2.2.2a, 
prevalence of wasting among children under 5 (lower than two standard deviations from the median 
weight for height of the reference population). 

Exposure 
Case Definition 
Child growth failure is estimated using three indicators, stunting, wasting, and underweight, all of which 
all of which are based on categorical definitions using the WHO 2006 growth standards for children 0-59 
months.1 Definitions are based on Z scores from the growth standards, which were derived from an 
international reference population. Mild, moderate, and severe categorical prevalences were estimated 
for each of the three indicators.  

Input data 
There are three main inputs for the GBD child growth failure models: microdata from population surveys 
and tabulated data from reports, published literature, and the WHO Global Database on Child Growth 
and Malnutrition.1 The primary data additions in GBD 2017 for child growth failure were from population 
surveys that include anthropometry. Population surveys include a variety of multi-country and country-
specific survey series such as Multiple Indicator Cluster Surveys (MICS), Demographic and Health Surveys 
(DHS), Living Standards Measurement Surveys (LSMS), and the China Health and Nutrition Survey (CHNS), 
as well as other one time country specific surveys such as the Indonesia Family Life Survey and the Brazil 
National Demographic and Health Survey of Children and Women. These microdata contain information 
about each individual child’s age (from which age in weeks and age in months are calculated), as well as 
height and/or weight. From that information, a height-for-age z-score (HAZ), weight-for-age z-score 
(WAZ), and weight-for-height z-score (WHZ) are calculated using the WHO 2006 Child Growth Standards 
and the LMS method.  

All available data from the WHO Global Database on Child Growth and Malnutrition was extracted for 
GBD 2016 – much of which is from published studies. Exclusions included examination date prior to 1985, 
non-population representative studies, and those based on self-report. A systematic literature review was 
last completed in GBD 2010. We looked for four metrics from all sources with tabulated data: mean Z 
score, prevalence <-1 Z score (mild), prevalence <-2 Z score (moderate), and prevalence <-3 Z score 
(severe). All data for each metric was extracted for each of stunting (height-for-age Z score; HAZ), wasting 
(weight-for-height Z score; WHZ), and underweight (weight-for-age Z score; WAZ).  

To maximize internal-consistency and comprehensiveness of the modeling dataset, we performed three 
data transformations. First, any data that were reported using the National Center for Health Statistics 
(NCHS) 1978 growth standards were crosswalked to corresponding values on the WHO 2006 Growth 
Standards curves based on a study that evaluated growth standard concordance.3 Crosswalks from 1978 
to 2006 growth standards were performed only on <-2 (i.e. moderate) prevalence data as that is where 
the concordance was most consistent. Second, for any study that lacked a measure of mean Z score for 
any of stunting, wasting, or underweight, we predicted a mean value for that study based on an ordinary-
least squares regression of mean Z score versus <-2 prevalence for that metric from all sources where 
both were available. Third, any data that was presented as both sexes combined or for 0-59 months 
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combined, we used the age and sex pattern from all data sources that included that detail to split into 
corresponding and age- and sex-specific data. All data was uploaded to a database and all inputs are 
catalogued in the Global Health Data Exchange (http://ghdx.healthdata.org). A representative dataset 
coverage map for moderate stunting is shown below.  

Figure 1: Number of data points in moderate stunting (<-2 HAZ) in males, 1990 to 2017 

 

 

Modelling strategy  
Exposure estimation 
The following three-step modelling process was applied to each of stunting, wasting, and underweight.  

First, all microdata was fit using an ensemble modelling process, a modelling framework developed for 
GBD 2016 that is described elsewhere in this appendix. A series of 12 individual distributions (normal, log 
normal, log logistic, exponential, gamma, mirror gamma, inverse gamma, gumbel, mirror gumbel, 
Weibull, inverse Weibull, and beta) were fit to the entire set of microdata (approximately 2.5 million 
individual z-scores) at the individual survey level. A weighting algorithm combined each distribution to 
find the optimal combination of these distributions for each survey, minimising the absolute prediction 
error across the entire distribution. Ensemble weights for each survey were then averaged across all 
surveys to produce a single set of global weights of the ensemble distributions. Weights were different 
for each sex, but invariant across geography, time, and age group. All component distributions that were 
used to derive weights were parameterised using “method of moments,” meaning that each 
corresponding probability density function (PDF) could be described as a function of the mean and 
variance of the quantity of interest.  

Second, models were developed for mean Z scores and prevalence of moderate and severe growth 
failure. Individual level microdata were collapsed to calculate three metrics: mean z-score, moderate 
prevalence, and severe prevalence. These data were combined with that derived from literature, GHDx 
review, and the WHO Global Database on Child Growth and Malnutrition. Each of the three metrics was 
then modelled using spatiotemporal Gaussian process regression (ST-GPR), a common modelling 
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framework used across GBD, generating estimates for each age-group, sex, year, and location. Location-
level covariates used in all models included Socio-demographic Index (SDI) and logit-transformed 
proportion of households with improved sanitation.  

Third, we combined estimates of mean, prevalence (moderate and severe) with ensemble weights in an 
optimisation framework in order to derive the variance that would best correspond to the predicted 
mean and prevalence. This variance was then paired with the mean and, using the method of moments 
equation for each of the component distributions of the ensemble, PDF of the distribution of Z-scores 
were calculated for each location, year, age-group, and sex.  PDFs were integrated to determine the 
prevalence between -1 and -2 Z scores (mild), between -2 and -3 Z scores (moderate), and below -3 Z 
scores (severe). These were categorical exposures used for subsequent attributable risk analysis.  

Ad-hoc data exclusions were limited. In some cases, we identified surveys with evidence of data entry 
issues (e.g. weights entered in a mixture of pounds and kilograms) that could not be corrected and these 
data were outliered. We initially ran all models with the complete dataset. Data plausibility inspection 
began with examination of time trends in stunting. If a given datum was judged to have led to a change in 
the prevalence of moderate stunting in 1-4 year olds of 50% or greater in 5 years or fewer, and was 
inconsistent with data prior to and after that year (a change considered implausible), we outliered the 
offending datum and reran the model. We then further visually-inspected the results of moderate 
stunting, wasting, and underweight in parallel to look for location-age-sex-years where the results were 
not internally-consistent (e.g. stunting and wasting decreasing, underweight rapidly increasing). This 
inspection revealed very few inconsistent data.  

 

Improvements from GBD 2015 to GBD 2016/ 2017 
In GBD 2017, the primary changes from GBD 2016 were the 1) addition of a significant volume of new 
survey data, 2) crosswalking instead of down-weighting data based on NCHS 1978 growth standard, 3) 
utilization of updated versions of location-level covariates, and 4) utilization of an updated version of the 
ST-GPR modeling framework that empirically derives many of the modeling parameters.  

There are several important differences from the GBD 2015 analysis. First, our systematic data searching 
efforts led to an approximately 30% increase in the number of data sources since GBD 2015, including a 
significant increase in data sources for Oceania, Latin America, and South Asia. Most notable was the 
increase in data for India through our collaboration with the India Council for Medical Research (ICMR) 
and Public Health Foundation of India (PHFI). Second, while GBD 2015 also used ST-GPR to model growth 
failure, models were completed for a single 0-5 age group, followed by application of a pooled uniform 
age-sex split which resulted in the implicit assumption that the age pattern of growth failure is invariant 
over time and geography. GBD 2016 estimates, owing to smaller sample sizes in younger age groups, do 
have wider uncertainty in those age groups. Third, GBD 2015, like all analyses of growth failure before it, 
assumed that high-income countries had zero prevalence of child growth failure. We suspended this 
assumption in GBD 2016 as it is not accurate and instead made explicit estimates of growth failure in all 
locations. Fourth, GBD 2015 did not use an ensemble approach or estimate the entire distribution of Z 
scores. Fifth, we changed the name of this risk factor category changed from childhood undernutrition to 
child growth failure to more explicitly identify the specific aspects of childhood undernutrition that are 
covered by the three component indicators.  
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Theoretical minimum-risk exposure level 
Theoretical minimum risk exposure level (TMREL) for underweight, stunting, and wasting was assigned to 
be greater than or equal to -1 SD of the WHO 2006 standard weight-for-age, height-for-age, and weight-
for-height curves respectively. This has not changed since GBD 2010. 

Relative risks 
The final list of outcomes paired with child growth failure risks included lower respiratory infections (LRI), 
diarrhea, measles, and protein energy malnutrition (PEM) as shown in Table 1. These were derived from a 
pooled cohort analysis by Olofin and colleagues.5  

There is a high degree of correlation between stunting, wasting, and underweight. Failing to account for 
their covariance and assuming independence would overestimate the total burden significantly. This is 
the main reason that GBD 2010 only included childhood underweight. In GBD 2013, a method was 
developed to adjust observed RRs of Olofin and colleagues by simulating the joint distribution of the 
three indicators using the distribution of each indicator and covariance between indicators in the 
countries included in the meta-analysis (extracted from Demographic and Health Survey (DHS) micro-
data).4 Based on the analysis done by McDonald and colleagues, we assumed there is an interaction 
between the three indicators, and extracted the interaction terms from the corresponding analysis. We 
calculated the adjusted RRs by minimizing the error between observed crude RRs (from meta-analysis) 
and expected crude RRs derived from adjusted RRs.   
 
Of historical note, URI and otitis media were included as outcomes in the GBD 2013 risk analysis, based 
on the “analogy” causal criterion, assuming there is similar pathway as LRI outcome. However, closer 
review for GBD 2015 did not find sufficient evidence to support their inclusion and they were excluded, a 
decision that was carried forward into GBD 2016. We also attributed 100% of PEM to childhood wasting 
and underweight but not stunting. To build on the existing literature base for GBD on risk-outcome pairs, 
a literature search was conducted for GBD 2017 searching for case-control studies published after 
January 1st, 1985; this search did not return any sources that were appropriate for this work.  
 
Table 1: Adjusted RRs for each risk-outcome pair for child growth failure 

Outcome Stunting Wasting Underweight 

Diarrhea 
<-1:   1.111 (1.023-1.273) 
<-2:   1.222 (1.067-1.5) 
<-3:   1.851 (1.28-2.699) 

<-1:   6.601 (2.158-11.243) 
<-2:   23.261 (9.02-35.845) 
<-3:   105.759 (42.198-157.813) 

<-1:   1.088 (1.046-1.134) 
<-2:   1.23 (1.163-1.314) 
<-3:   2.332 (2.076-2.802) 

Lower respiratory 
infections (LRI) 

<-1:   1.125 (0.998-1.655) 
<-2:   1.318 (1.014-2.165) 
<-3:   2.355 (1.15-5.114) 

<-1:   5.941 (1.972-11.992) 
<-2:   20.455 (70.84-37.929) 
<-3:   47.67 (15.923-94.874) 

<-1:   1.145 (1.044-1.364) 
<-2:   1.365 (1.215-1.755) 
<-3:   2.593 (1.908-4.39) 

Measles 
<-1:   1.103 (0.861-1.719) 
<-2:   1.54 (1.029-3.222) 
<-3:   2.487 (1.129-6.528) 

<-1:   1.833 (0.569-8.965) 
<-2:   8.477 (1.33-42.777) 
<-3:   37.936 (5.088-199.126) 

<-1:   0.995 (0.5-1.726) 
<-2:   2.458 (1.26-5.118) 
<-3:   5.668 (1.767-12.414) 

Protein-energy 
malnutrition 0% PAF 100% PAF 100% PAF 
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Input data and Methodological Summary 
 
Indicator definition 

This modeling strategy encompasses SDG indicator associated with childhood overweight: 2.2.2b. 

Indicator 2.2.2b 

As a component of SDG Goal 2. End hunger, achieve food security, and improved nutrition, SDG Target 2.2, 
by 2030, end all forms of malnutrition, including achieving, by 2025, the internationally agreed targets on 
stunting and wasting in children under 5 years of age, and address the nutritional needs of adolescent girls, 
pregnant and lactating women and older persons, is measured using SDG indicator 2.2.2b, prevalence of 
children aged 2 to 4 years with a body-mass index (BMI) exceeding the overweight cut-offs established by 
the International Obesity Task Force (IOTF) for each sex and by month of age. 

 
Case definitions 
High body-mass index (BMI) for adults (ages 20+) is defined as BMI greater than 20 to 25 kg/m2. High BMI 
for children (ages 1-19) is defined as being overweight or obese based on IOTF cutoffs. 

Input data and methodological summary 
Data sources 
We systematically searched Medline to identify studies providing nationally or subnationally representative 
estimates of overweight prevalence, obesity prevalence or mean body-mass index (BMI). We limited the 
search to literature published between January 1, 2016 and December 31, 2016 to update the systematic 
literature search previously performed as part of GBD 2015.  

The search for adults was conducted on 4 January 2017 using the following terms:  

((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic 
Locations"[Mesh] NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "adult"[MeSH]) AND ("Data 
Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital 
statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT 
(Comment[ptyp] OR Case Reports[ptyp] OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : 
"2016/12/31"[Date - Publication])) 

The search for children was conducted on 4 August 2016 using the following terms: 
((("Body Mass Index"[Mesh] OR "Overweight"[Mesh] OR "Obesity"[Mesh]) AND ("Geographic 
Locations"[Mesh] NOT “United States”[Mesh]) AND ("humans"[Mesh] AND "child"[MeSH]) AND ("Data 
Collection"[Mesh] OR "Health Services Research"[Mesh] OR "Population Surveillance"[Mesh] OR "Vital 
statistics"[Mesh] OR "Population"[Mesh] OR "Epidemiology"[Mesh] OR "surve*"[TiAb]) NOT 
(Comment[ptyp] OR Case Reports[ptyp] OR "hospital"[TiAb])) AND ("2016/01/01"[Date - Publication] : 
"2016/12/31"[Date - Publication])) 

Our search for adult estimates identified 456 abstracts, of which 25 met inclusion criteria and were 
extracted. The search for childhood estimates identified 137 articles, of which 4 were extracted. Including 
sources from the previous GBD systematic literature searches, a total of 11,220 articles were identified, of 
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which 845 were included. Additionally, we searched the Global Health Data Exchange (GHDx) database for 
individual-level data from major multinational survey series or country-specific surveys and identified 5,385 
location-year sources meeting the inclusion criteria.  

Eligibility criteria 
We included representative studies providing data on mean BMI or prevalence of overweight or obesity 
among adults or children. For adults, studies were included if they defined overweight as BMI≥25 kg/m2 
and obesity as BMI≥30 kg/m2, or if estimates using those cutoffs could be back-calculated from reported 
categories. For children (children ages 2-18), studies were included if they used International Obesity Task 
Force (IOTF) standards to define overweight and obesity thresholds. We only included studies reporting 
data collected between January 1, 1980 and December 31, 2016. Studies were excluded if they used non-
random samples (e.g. case-control studies or convenience samples), conducted among specific 
subpopulations (e.g. pregnant women, racial or ethnic minorities, immigrants, or individuals with specific 
diseases), used alternative methods to assess adiposity (e.g. waist-circumference, skin-fold thickness, or 
hydrodensitometry), had sample sizes of less than 20 per age-sex group, or provided inadequate 
information on any of the inclusion criteria. We also excluded review articles and non-English language 
articles.  

Data collection process  
Where individual-level survey data were available, we computed mean BMI using weight and height. We 
then used BMI to determine the prevalence of overweight and obesity. For individuals aged over 18 years, 
we considered them to be overweight if their BMI was greater than or equal to 25 kg/m2, and obese if their 
BMI was greater than or equal to 30 kg/m2. For individuals aged 2 to 18 years, we used monthly IOTF 
cutoffs2 to determine overweight and obese status when age in months was available. When only age in 
years was available, we used the cutoff for the midpoint of that year. Obese individuals were also 
considered to be overweight. We excluded studies using the World Health Organization (WHO) standards 
or country-specific cutoffs to define childhood overweight and obesity. At the individual-level, we 
considered BMI<10 kg/m2 and BMI>70 kg/m2 to be biologically implausible and excluded those 
observations. 

The rationale for choosing to use the IOTF cutoffs over the WHO standards has been described elsewhere. 
Briefly, the IOTF cutoffs provide consistent child-specific standards for ages 2-18 derived surveys covering 
multiple countries. On the other hand, the WHO growth standards apply to children under age 5 and the 
WHO growth reference applies to children ages 5 to 19. The WHO growth reference for children ages 5 to 
19 was derived from United States data which is less representative than the multinational data used by 
IOTF. Additionally, the switch between references at age 5 can produce artificial discontinuities. Given that 
we estimate global childhood overweight and obesity for ages 2-19 (with ages 19 using standard adult 
cutoffs), the IOTF cutoffs were preferable. Additionally, we found that IOTF cutoffs were more commonly 
used in scientific literature covering childhood obesity. 

From report and literature data, we extracted data on mean BMI, prevalence of overweight, and 
prevalence of obesity, measures of uncertainty for each, and sample size, by the most granular age and sex 
groups available. Additionally, we extracted the same study-level covariates as were extracted from 
microdata (measurement, urbanicity, and representativeness), as well as location and year.  

In addition to the primary indicators described above, we extracted relevant survey-design variables, 
including primary sampling unit, strata, and survey weights, which were used to tabulate individual-level 
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microdata and produce accurate measures of uncertainty. We extracted three study-level covariates: 1) 
whether height and weight data were measured or self-reported; 2) whether the study was predominantly 
conducted in an urban area, rural area or both; and 3) the level of representativeness of the study (national 
or subnational).  

Finally, we extracted relevant demographic indicators, including location, year, age and sex. We estimated 
the standard error of the mean from individual-level data, where available, and used the reported standard 
error of the mean for published data. When multiple data sources were available for the same country, we 
included all of them in our analysis. If data from the same data source were available in multiple formats 
such individual-level data and tabulated data, we used individual-level data.  

Self-report bias adjustment 
We included both measured and self-reported data. We tested for bias in self-report data compared to 
measured data, which is considered to be the gold-standard. There was no clear direction of bias for 
children ages 2 to 14, so for these age groups we only included measured data. For individuals ages 15 and 
above, we adjusted self-reported data for overweight prevalence, obesity prevalence and mean BMI using 
the following nested hierarchical mixed-effects regression models, fit using restricted maximum likelihood 
separately by sex: 

logit(overweight)c,a,t = β0 + β1m + �βkIA[a]
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IA[a]IM[m] + αs + αsm + αr + αrm + αc + αcm + αt + αtm + ϵc,a,t 

logit(obesity)c,a,t = β0 + β1m + �βkIA[a]
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log(BMI)c,a,t = β0 + β1m + �βkIA[a]
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Where m is a fixed effect on measurement (binary, either measured (1) or self-report (0)), IA[a] is an 
indicator variable for specific age group A, IA[a]IM[m] is an interaction term between age and 
measurement, αs, αr, and αc are random effects at the super region, region, and country, respectively, and 
αt is a random effect by time-period (1980-1989, 1990-1999, 2000-2009, 2010-2017). Random effects at 
the country level and time-period level were used to fit the models, but were taken as noise and were not 
used in adjustment of self-reported data. We propagated the uncertainty in the self-report adjustment 
model by adding the variance of each of the regression coefficients used in adjustment to the data variance 
in delta-transformed space. After adjustment, regressions confirmed that self-reported data was no longer 
significantly different from measured data. 

Age and sex splitting 
Any report or literature data provided in age groups wider than the standard 5-year age groups or as both 
sexes combined were split using the approach used by Ng et al.1 Briefly, age-sex patterns were identified 
using sources with data on multiple age-sex groups and these patterns were applied to split aggregated 
report and literature data. Uncertainty in the age-sex split was propagated by multiplying the standard 
error of the data by the square root of the number of splits performed. We did not propagate the 
uncertainty in the age pattern and sex pattern used to split the data as they seemed to have small effect. 
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Prevalence estimation for overweight and obesity 
After adjusting for self-report bias and splitting aggregated data into 5-year age-sex groups, we used 
spatiotemporal Gaussian process regression (ST-GPR) to estimate the prevalence of overweight and 
obesity. This modelling approach has been described in detail elsewhere.  

The linear model, which when added to the smoothed residuals forms the mean prior for GPR is as follows:  
 

logit(overweight)c,a,t = β0 + β1energyc,t + β2SDIc,t +  β3vehiclesc,t +  β4agriculturec,t + �βkIA[a]

21

k=5

+ αs + αr + αc 

logit(obesity/overweight)c,a,t = β0 + β1energyc,t + β2SDIc,t +  β3vehiclesc,t + �βkIA[a]

21

k=4

+ αs + αr + αc 

 
where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is ten-year lag-distributed energy consumption per capita, 𝑆𝑆𝑆𝑆𝑆𝑆 is a composite index of 
development including lag-distributed income per capita, education, and fertility, 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is is the number 
of two or four-wheel vehicles per capita, and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the proportion of the population working in 
agriculture. IA[a] is a dummy variable indicating specific age group A that the prevalence point captures, 
and αs, αr, and αc are super region, region, and country random intercepts, respectively. Random effects 
were used in model fitting but were not used in prediction. 
 
We tested all combinations of the following covariates to see which performed best in terms of in-sample 
AIC for the overweight linear model and the obesity as a proportion of overweight linear model: ten-year 
lag distributed energy per capita, proportion of the population living in urban areas, SDI, lag-distributed 
income per capita, educational attainment (years) per capita, proportion of the population working in 
agriculture, grams of sugar adjusted for energy per capita, grams of sugar not adjusted for energy per 
capita, and the number of two or four-wheeled vehicles per capita. We selected these candidate covariates 
based on theory as well as reviewing covariates used in other publications. The final linear model was 
selected based on: 1) if the direction of covariates matched what is expected from theory, 2) all the 
included covariates were significant, and 3) minimising in-sample AIC. The covariate selection process was 
performed using the dredge package in R. 
 
The new version of ST-GPR for GBD 2017 incorporates information about data density into the process for 
smoothing over space and time. Estimates in areas/years with few observations have more weight on 
regional observations. To specify the distribution of time weights and space weights, we used values of 
lambda=0.2 and zeta=0.05, respectively. We used a value of omega=1.0 for the distribution of age weights. 
We set the GPR scale parameter to 20, and used the default global cutoff setting for amplitude.  
 

Estimating mean BMI 
To estimate the mean BMI for adults in each country, age, sex, and time period 1980-2017, we first used 
the following nested hierarchical mixed-effects model, fit using restricted maximum likelihood on data from 
sources containing estimates of all three indicators (prevalence of overweight, prevalence of obesity, and 
mean BMI), in order to characterise the relationship between overweight, obesity, and mean BMI:  

log (BMIc,a,s,t) = β0 + β1owc,a,s,t + β2obc,a,s,t + β3sex + �βkIA[a]
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+ owc,a,s,t + obc,a,s,t) + αc(1 + owc,a,s,t + obc,a,s,t) + ϵc,a,s,t 
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where owc,a,s,t is the prevalence of overweight in country c, age a, sex s, and year t, obc,a,s,t is the 
prevalence of obesity in country c, age a, sex s, and year t, sex is a fixed effect on sex, IA[a] is an indicator 
variable for age, and αs, αr, and αc are random effects at the super region, region, and country, 
respectively. The model was run in Stata 13. 

We applied 1,000 draws of the regression coefficients to the 1,000 draws of overweight prevalence and 
obesity prevalence produced through ST-GPR to estimate 1,000 draws of mean BMI for each country, year, 
age, and sex. This approach ensured that overweight prevalence, obesity prevalence, and mean BMI were 
correlated at the draw level and uncertainty was propagated. 

Estimating BMI distribution 
We used the ensemble distribution approach described in the manuscript. We fit ensemble weights by 
source and sex, with source- and sex-specific weights averaged across all sources included to produce the 
final global weights. The ensemble weights were fit on measured microdata. The final ensemble weights 
were: exponential = 0.002, gamma = 0.028, inverse gamma = 0.085, log-logistic = 0.187, Gumbel = 0.220, 
Weibull = 0.011, log-normal = 0.058, normal = 0.012, beta = 0.136, mirror gamma = 0.008, and mirror 
Gumbel = 0.113. 
 
One thousand draws of BMI distributions for each location, year, age group, and sex estimated were 
produced by fitting an ensemble distribution using 1,000 draws of estimated mean BMI, 1,000 draws of 
estimated standard deviation, and the ensemble weights. Estimated standard deviation was produced by 
optimising a standard deviation to fit estimated overweight prevalence draws and estimated obesity 
prevalence draws. 
 

Assessment of risk-outcome pairs 
Risk-outcome pairs were defined based on strength of available evidence supporting a causal effect. We 
performed a systematic review of published meta-analyses, pooled analyses, and systematic reviews 
available through PubMed using the following search string: ("Body Mass Index"[Mesh] OR 
"Overweight"[Mesh] OR "Obesity"[Mesh]) AND (Meta-Analysis[ptyp] OR "systematic review"[tiab] OR 
"pooled analysis"[tiab]). Inclusion criteria are 1) the health outcome is included in GBD, 2) at least one 
prospective cohort is included, and 3) that the summary effect size is statistically significant. For outcomes 
meeting inclusion criteria we completed causal criteria tables to evaluate the strength of evidence 
supporting a causal relationship. Appendix Table 6 in the GBD2017 Risk Factors Capstone paper reports the 
results of our assessment for included risk-outcome pairs and Appendix Table 7 reports the supporting 
scientific literature.2 Gallbladder disease, cataract, multiple myeloma, gout, non-Hodgkin lymphoma, 
asthma, Alzheimer disease, and atrial fibrillation were added as new outcomes in GBD 2016, resulting in a 
total of 38 outcomes. 

Theoretical minimum risk exposure level  
For adults (ages 20+), the theoretical minimum risk exposure level (TMREL) of BMI (20-25 kg/m2) was 
determined based on the BMI level that was associated with the lowest risk of all-cause mortality in 
prospective cohort studies.3 

For children (ages 2-19), the TMREL is “normal weight”, that is, not overweight or obese, based on IOTF 
cutoffs. 
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Relative risk 
The relative risk per 5-unit change in BMI for each disease endpoint was obtained from meta-analyses, and 
where available, pooled analyses of prospective observational studies. In cases where a relative risk per 5-
unit change in BMI was not available we computed our own dose-response meta-analysis using two-step 
generalised least squares for time trends estimation methods.  

For childhood outcomes (ages 2-19), we computed categorical relative risks for overweight and obesity 
using a random effects meta-analysis.  

Relative risks for all 38 outcomes, by age and sex, are reported in Table 6 of the GBD 2017 Risk Factors 
Capstone paper appendix.2 
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3.1.1 Maternal disorders SDG Capstone Appendix  

 
 
Input Data & Methodological Summary 
Indicator definition 
This modeling strategy encompassed the indicator associated with the maternal mortality ratio (SDG 
indicator 3.1.1). 

Indicator 3.1.1 
As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.1, by 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live births, is 
measured using SDG indicator 3.1.1, maternal mortality ratio (maternal deaths per 100,000 live births) 

 
Input data 
CODEm models were informed by centrally prepped data stored in the cause of death (COD) database. All 
data were corrected for incidental HIV deaths. Spectrum outputs of HIV prevalence in pregnancy were 
combined with relative risk of mortality during pregnancy (HIV-positive versus HIV-negative) to calculate 
population attributable fractions (PAFs). A proportion of these deaths are incidental and a proportion are 
maternal. PAFs were applied to all sibling history and census data to remove incidental HIV deaths. We 
performed an updated literature review to search for new scientific articles reporting data on maternal 
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mortality, morbidity, and relative risk of mortality in pregnancy in HIV-positive versus HIV-negative 
women. We completed this search on July 20, 2017, using the following search string:  

(   ((( ( ( "Postpartum Hemorrhage" OR "Uterine Hemorrhage" ) OR ( maternal[Title/Abstract] OR pregnant[Title/Abstract] OR 
pregnancy[Title/Abstract] OR mothers ) AND ( haemorrhag*[Title/Abstract] OR hemorrhag*[Title/Abstract] ) NOT "case 
report"[All fields] ) OR ( ( "induced abortion" OR "Therapeutic abortion" OR "legal Abortion" OR "medical abortion" OR 
"miscarriage" OR "Abortion, Induced"[Mesh] OR "Abortion, Therapeutic"[Mesh] OR "Abortion, Legal"[Mesh] OR "ectopic 
Pregnancy" ) NOT ( "case report"[Title/Abstract] OR "birth defect"[Title/Abstract] OR congenital[Title/Abstract] ) ) OR ( 
"obstructed labour" OR "obstructed labor" OR "labour dystocia" OR "labor dystocia" OR dystocia OR "cephalopelvic 
disproportion" OR "cephalo-pelvic disproportion" ) OR ( ( "obstetric fistula" OR "vesicovaginal fistula" ) OR "rectovaginal fistula" ) 
OR ( ( "Puerperal Infection"[Mesh] OR "Puerperal Infection" OR ( (maternal[Title/Abstract] OR pregnant[Title/Abstract] OR 
pregnancy[Title/Abstract] ) AND ( Sepsis OR infection[Title/Abstract] ) ) ) NOT "case report" ) OR ( (Pre-Eclampsia[Title/Abstract] 
OR preeclampsia[Title/Abstract] OR Eclampsia[Title/Abstract] OR Pre-Eclampsia[Mesh] OR Eclampsia[Mesh] OR "Hypertension, 
Pregnancy-Induced"[Mesh] OR "pregnancy induced hypertension"[Title/Abstract] OR "gestational hypertension"[Title/Abstract] 
OR "Hypertensive disorders of pregnancy"[Title/Abstract]) NOT ("case report" OR "kidney don*"[Title/Abstract] OR 
polymorphism*[Title/Abstract] OR endotheli*[Title/Abstract]) ) ) AND ( 2016/08/01[PDat] : 2017/12/31[PDat] ) NOT ( 
animals[MeSH] NOT humans[MeSH] ))) OR ((( ( ( ( "maternal mortality"[Title/Abstract] OR "maternal death"[Title/Abstract] OR 
"MM"[Title/Abstract] OR "confidential enquiry"[Title/Abstract] OR ( ( obstetric[Title/Abstract] OR pregnancy[Title/Abstract] ) AND 
(etiology[Title/Abstract] OR cause[Title/Abstract] or pattern[Title/Abstract] ) AND ( death[Title/Abstract] OR 
mortality[Title/Abstract] ) ) ) NOT ( fetal[Title/Abstract] OR newborns[Title/Abstract] OR newborn[Title/Abstract] OR 
neonatal[Title/Abstract] OR “case report”[Title/Abstract] OR “case study”[Title/Abstract] OR pathogenesis[Title/Abstract] OR 
thromboprophylaxis[Title/Abstract] ) ) NOT ( animals[MeSH] NOT humans[MeSH] ) OR ( ( (“maternal mortality”[Title/Abstract] OR 
“maternal death*”[Title/Abstract] OR “MMR”[Title/Abstract]) AND (“Afghanistan”[Title/Abstract] OR “Albania”[Title/Abstract] OR 
“Algeria”[Title/Abstract] OR “Andorra”[Title/Abstract] OR “Angola”[Title/Abstract] OR “Antigua and Barbuda”[Title/Abstract] OR 
“Argentina”[Title/Abstract] OR “Armenia”[Title/Abstract] OR “Azerbaijan”[Title/Abstract] OR “Bahrain”[Title/Abstract] OR 
“Bangladesh”[Title/Abstract] OR “Barbados”[Title/Abstract] OR “Belarus”[Title/Abstract] OR “Belize”[Title/Abstract] OR 
“Benin”[Title/Abstract] OR “Bhutan”[Title/Abstract] OR “Bolivia”[Title/Abstract] OR “Bosnia and Herzegovina”[Title/Abstract] OR 
“Botswana”[Title/Abstract] OR “Brazil”[Title/Abstract] OR “Brunei”[Title/Abstract] OR “Bulgaria”[Title/Abstract] OR “Burkina 
Faso”[Title/Abstract] OR “Burundi”[Title/Abstract] OR “Cambodia”[Title/Abstract] OR “Cameroon”[Title/Abstract] OR “Cape 
Verde”[Title/Abstract] OR “Central African Republic”[Title/Abstract] OR “Chad”[Title/Abstract] OR “China”[Title/Abstract] OR 
“Colombia”[Title/Abstract] OR “Comoros”[Title/Abstract] OR “Congo”[Title/Abstract] OR “Costa Rica”[Title/Abstract] OR 
“Croatia”[Title/Abstract] OR “Cuba”[Title/Abstract] OR “Cyprus”[Title/Abstract] OR “Côte d’Ivoire”[Title/Abstract] OR “Democratic 
Republic of the Congo”[Title/Abstract] OR “Djibouti”[Title/Abstract] OR “Dominica”[Title/Abstract] OR “Dominican 
Republic”[Title/Abstract] OR “Ecuador”[Title/Abstract] OR “Egypt”[Title/Abstract] OR “El Salvador”[Title/Abstract] OR “Equatorial 
Guinea”[Title/Abstract] OR “Eritrea”[Title/Abstract] OR “Ethiopia”[Title/Abstract] OR “Federated States of 
Micronesia”[Title/Abstract] OR “Fiji”[Title/Abstract] OR “Gabon”[Title/Abstract] OR “Georgia”[Title/Abstract] OR 
“Ghana”[Title/Abstract] OR “Grenada”[Title/Abstract] OR “Guatemala”[Title/Abstract] OR “Guinea”[Title/Abstract] OR “Guinea-
Bissau”[Title/Abstract] OR “Guyana”[Title/Abstract] OR “Haiti”[Title/Abstract] OR “Honduras”[Title/Abstract] OR 
“India”[Title/Abstract] OR “Indonesia”[Title/Abstract] OR “Iran”[Title/Abstract] OR “Iraq”[Title/Abstract] OR 
“Jamaica”[Title/Abstract] OR “Jordan”[Title/Abstract] OR “Kazakhstan”[Title/Abstract] OR “Kenya”[Title/Abstract] OR 
“Kiribati”[Title/Abstract] OR “Kuwait”[Title/Abstract] OR “Kyrgyzstan”[Title/Abstract] OR “Laos”[Title/Abstract] OR 
“Latvia”[Title/Abstract] OR “Lebanon”[Title/Abstract] OR “Lesotho”[Title/Abstract] OR “Liberia”[Title/Abstract] OR 
“Libya”[Title/Abstract] OR “Lithuania”[Title/Abstract] OR “Macedonia”[Title/Abstract] OR “Madagascar”[Title/Abstract] OR 
“Malawi”[Title/Abstract] OR “Malaysia”[Title/Abstract] OR “Maldives”[Title/Abstract] OR “Mali”[Title/Abstract] OR 
“Malta”[Title/Abstract] OR “Marshall Islands”[Title/Abstract] OR “Mauritania”[Title/Abstract] OR “Mauritius”[Title/Abstract] OR 
“Moldova”[Title/Abstract] OR “Mongolia”[Title/Abstract] OR “Montenegro”[Title/Abstract] OR “Morocco”[Title/Abstract] OR 
“Mozambique”[Title/Abstract] OR “Myanmar”[Title/Abstract] OR “Namibia”[Title/Abstract] OR “Nepal”[Title/Abstract] OR 
“Nicaragua”[Title/Abstract] OR “Niger”[Title/Abstract] OR “Nigeria”[Title/Abstract] OR “North Korea”[Title/Abstract] OR 
“Oman”[Title/Abstract] OR “Pakistan”[Title/Abstract] OR “Palestine”[Title/Abstract] OR “Panama”[Title/Abstract] OR “Papua New 
Guinea”[Title/Abstract] OR “Paraguay”[Title/Abstract] OR “Peru”[Title/Abstract] OR “Philippines”[Title/Abstract] OR 
“Qatar”[Title/Abstract] OR “Romania”[Title/Abstract] OR “Russia”[Title/Abstract] OR “Rwanda”[Title/Abstract] OR “Saint 
Lucia”[Title/Abstract] OR “Saint Vincent and the Grenadines”[Title/Abstract] OR “Samoa”[Title/Abstract] OR “Saudi 
Arabia”[Title/Abstract] OR “Senegal”[Title/Abstract] OR “Serbia”[Title/Abstract] OR “Seychelles”[Title/Abstract] OR “Sierra 
Leone”[Title/Abstract] OR “Singapore”[Title/Abstract] OR “Solomon Islands”[Title/Abstract] OR “Somalia”[Title/Abstract] OR 
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“South Africa”[Title/Abstract] OR "South Sudan"[Title/Abstract] OR “Sri Lanka”[Title/Abstract] OR “Sudan”[Title/Abstract] OR 
“Suriname”[Title/Abstract] OR “Swaziland”[Title/Abstract] OR “Syria”[Title/Abstract] OR “São Tomé and Príncipe”[Title/Abstract] 
OR “Taiwan”[Title/Abstract] OR “Tajikistan”[Title/Abstract] OR “Tanzania”[Title/Abstract] OR “Thailand”[Title/Abstract] OR “The 
Bahamas”[Title/Abstract] OR “The Gambia”[Title/Abstract] OR “Timor-Leste”[Title/Abstract] OR “Togo”[Title/Abstract] OR 
“Tonga”[Title/Abstract] OR “Trinidad and Tobago”[Title/Abstract] OR “Tunisia”[Title/Abstract] OR “Turkmenistan”[Title/Abstract] 
OR “Uganda”[Title/Abstract] OR “Ukraine”[Title/Abstract] OR “United Arab Emirates”[Title/Abstract] OR 
“Uruguay”[Title/Abstract] OR “Uzbekistan”[Title/Abstract] OR “Vanuatu”[Title/Abstract] OR “Venezuela”[Title/Abstract] OR 
“Vietnam”[Title/Abstract] OR “Yemen”[Title/Abstract] OR “Zambia”[Title/Abstract] OR “Zimbabwe”[Title/Abstract]) NOT ( 
animals[MeSH] NOT humans[MeSH] ) NOT ( “demographic and health survey*”[Title/Abstract] OR DHS[Title/Abstract] OR 
“reproductive health survey*”[Title/Abstract] OR RHS[Title/Abstract] ) ) ) AND ( 2016/08/15[PDat] : 2017/12/31[PDat] ) )))   ) OR 
(  (  HIV[Title/Abstract]  OR "Acquired Immunodeficiency Syndrome"[Title/Abstract]  OR AIDS[Title/Abstract] )  AND ( 
“pregnant”[Title/Abstract] OR “pregnancy”[Title/Abstract] OR “postpartum”[Title/Abstract] OR "post partum"[Title/Abstract]  ) 
AND (  “mortality”[Title/Abstract] OR “death”[Title/Abstract]  )  NOT "case report"  NOT ( animals[MeSH] NOT 
humans[MeSH]  )  AND (  2016/08/15[PDat] : 2017/12/31[PDat]   )  ) 

All data from all geographies were reviewed in CODEm models. Outliers were identified as those data 
where age patterns or temporal patterns were inconsistent with neighbouring age groups or locations or 
where sparse data were predicting implausible overall temporal or age patterns for a given location.  

We used scientific literature data identified through the search string above to inform DisMod-MR 2.1 
aetiology proportion models as well as data from the COD database.  

A total of 6,554 literature sources were reviewed for their title and abstract. Of those selected for full text 
review, 41 of them were extracted to inform maternal disorder models (fatal and non-fatal). All cause-
specific maternal mortality data were prepped as “proportion” of total maternal deaths due to that 
cause. Because many sources do not include the entire cause list, a series of study covariates were used 
to facilitate crosswalking back to the reference definition. The reference definition includes “other” direct 
obstetric complications, indirect maternal deaths, and late maternal death. All aetiology-specific COD 
data were processed to be “proportion” data by calculating the cause-specific deaths divided by the total 
maternal deaths for the matching data source, year, age, and location. Late maternal death data were 
only included for the subset of locations where they were reliably coded in raw VR. All data were 
uploaded to the non-fatal database.  

Modelling strategy  
Overall maternal mortality was estimated with CODEm. Covariates included in this model and their level 
and directionality are show in the table below:  

Level Covariate  Direction 

Level 1 

Age-specific fertility rate 

Total fertility rate (log-transformed) 

Maternal education (years per capita) 

In-facility delivery (proportion) 

Skilled birth attendance (proportion) 

Neonatal mortality ratio (log-transformed) 

+ 

+ 

– 

– 

– 

+ 
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Age-specific HIV mortality in females 10-54 (log-transformed) + 

Level 2 

Antenatal care 1-visit coverage (proportion) 

Antenatal care 4-visits coverage (proportion) 

Age-standardised wasting (weight-for-height) summary 
exposure value 

Age-standardised stunting (height-for-age) summary exposure 
value 

Healthcare access and quality index  

Prevalence of obesity 

– 

– 

+ 

+ 

- 

+ 

Level 3 

Socio-demographic Index 

Mortality shock (cumulative rate in last 10 years) 

LDI (log-transformed) 

Hospital beds (per 1,000 population) 

+ 

– 

+ 

– 

– 

 

We used STGPR to estimate MMRs for each of the eight maternal subcauses. This modeling strategy 
requires data to be in standard GBD age groups. To achieve this, we used the age pattern of the COD data 
for each cause and applied it to the literature data that were not in the standard GBD age groups. STGPR 
also requires variance for each data point. In order to compute variance we ran a Lowess regression on 
the data by year and used the variance of the residuals resulting from the difference between the data 
and the predicted values.  

Country covariates were specific for each model and included abortion legality (for abortion and 
miscarriage as well as ectopic pregnancy), log-transformed lag-distributed income (other maternal 
deaths, and indirect maternal deaths), unsafe sanitation summary exposure value (for maternal sepsis 
and other maternal infections), Socio-demographic Index (for late maternal deaths), logit-transformed in-
facility delivery proportion (for haemorrhage), mean systolic blood pressure (for hypertensive disorders 
of pregnancy), and age-specific underweight women (for obstructed labour).  

Aetiology-specific estimates were derived by scaling the results from the STGPR subcause-specific models 
scaled in relation to each other to equal one and then multiplying them by the total maternal deaths, 
corrected for late maternal deaths, for that age group, location, and year. HIV-related maternal deaths 
were estimated for all locations using the PAF approach described above for mortality data processing. 
Incidental HIV deaths during pregnancy were by definition excluded.  
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3.1.2, 3.8.1 Skilled Birth Attendance SDG Capstone Appendix 

Flowchart 

 

Input data & Methodological summary 

Indicator definition 
This modeling strategy pertains to the indicator associated with skilled birth attendance (SBA) (SDG 
indicator 3.1.2), which is also included in the universal health coverage (UHC) index (SDG indicator 
3.8.1d). 

Indicator 3.1.2 

As a component of SDG Goal 3. Ensure healthy lives and promote well‐being for all at all ages, SDG Target 
3.1, by 2030, reduce the global maternal mortality ratio to less than 70 per 100,000 live births, is 
measured by SDG indicator 3.1.2, proportion of births attended by skilled health personnel (doctors, 
nurses or midwives). Note that SBA is included in the UHC index (SDG indicator 3.8.1d). 

 

Input data 

For the present analysis, we used individual-level microdata from population health surveys and 
tabulated survey report data on skilled birth attendance (SBA). As defined by the World Health 
Organization (WHO), SBA reflects the proportion of births in a given year where a doctor, nurse, or 
midwife was present.1 

Survey data which provided individual-level data, and specifically among female respondents, were 
identified and extracted. Major multi-country survey programs included in the analysis include the 
Demographic and Health Surveys (DHS),1 Multiple Indicator Cluster Surveys (MICS),2 Reproductive Health 
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Surveys (RHS),3 Living Standards Measurement Study (LSMS) surveys,4 and World Health Surveys (WHS).5 
We also conducted a comprehensive search of the Global Health Data Exchange (GHDx),6 as well as 
targeted internet searches and review of Ministry of Health websites, to identify national surveys and 
other multi-country survey programs. In addition, we utilized tabulated report data from regional WHO 
databases, when available, including the PAHO7, WHO WPR8, and the WHO European Health for All 
databases9.  
 
We excluded all data sources that were not nationally representative or had high levels of missingness. 
We applied survey weights based on survey sampling frames whenever they were available to generate 
weighted national estimates of SBA coverage accompanied by estimates of standard error (SE). Estimates 
of SE, as well as sample sizes, were used to calculate uncertainty, as described below. Any point estimates 
with sample sizes less than 50 were reviewed to ensure that they were not substantive outliers and would 
otherwise have an undue influence on our analysis.  
 
Due to potential bias in recall, we limited our analysis to women who gave birth up to five years prior to 
the time of survey; due to data limitations, we used a limit of up to two years for some surveys. We also 
had to standardize the definition of “skilled health professional” across countries, which varied by 
differences in quality of training or health professional roles. For this analysis, doctors, nurses, and 
midwives were included as our foundational definition for SBA, and we extended this to include country-
specific medical staff based on the number of years of training they received and/or their comparable 
ability to intervene in an emergency situation (eg, clinical officers). Care received during delivery by 
traditional health personnel was not considered a birth overseen by a skilled attendant.  
 
Modeling strategy 

Data processing 

Age splitting 

Most household surveys collect information on maternal and child health (MCH) indicators for children 
under 5 and/or mothers who gave birth within five years prior to the time of survey. To maximize data 
use for our model, we included SBA information for children aged 12 to 59 months at the time of survey. 
Children younger than 12 months of age were excluded to minimize the influence of potentially censored 
observations. SBA coverage estimates were assigned to birth-cohort years based on a child’s age prior to 
the time of survey: we used responses recorded for children aged 12 to 23 months for SBA coverage for 
one year prior to the time of survey, children aged 24 to 35 months for coverage two years prior to the 
time of survey, and so forth. 

Age-specific estimates are easily computed from individual-level microdata, but many published reports 
and survey summaries present data in broader age aggregates (eg, SBA coverage for children aged 12 to 
35 months). To standardize these age groups, we applied an age-splitting model used in the GBD study,10 
as well as analyses that generated smoking and obesity prevalence by age group.11,12  

Using surveys with microdata as the reference, we used the following model to generate standardized 
age group-specific estimates for SBA:  
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𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 = 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 
𝑎𝑎+𝑥𝑥 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗
𝑎𝑎+𝑥𝑥   

where 𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑘𝑘 is the adjusted estimate of coverage for target age group 𝑎𝑎 in country 𝑐𝑐 and year 𝑡𝑡 of survey 
𝑘𝑘; and 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑘𝑘 

𝑎𝑎+𝑥𝑥  is coverage reported from survey 𝑘𝑘, for country 𝑐𝑐 in year 𝑡𝑡 for the age group spanning age 𝑎𝑎 
to age (𝑎𝑎 + 𝑥𝑥). The ratio of coverage between the target age group and broader age group from a survey 
𝑗𝑗 with microdata from the same country-year was used to split data from survey 𝑘𝑘. Surveys to be split 
were ideally matched with DHS or MICS surveys. If microdata were not available for the same year, ratios 
within five years of the survey that required age-splitting were applied.  

Bias adjustments 

Intervention coverage estimates based on administrative sources can be biased, yet the direction and 
magnitude of such biases are not universal. Some studies show that coverage estimates from 
administrative data source are systematically higher than those of survey-based estimates,13 while other 
studies show that bias directionality is more heterogeneous.14 Such biases may arise for a number of 
reasons, including discrepancies in the accurate reporting of services or interventions provided (eg, 
number of skilled attendants) and target population (eg, number of children born), as well as capturing 
these data in a timely manner from both public and private sector facilities and healthcare providers.  

For SBA, we view individual-level data collected through population health surveys as the most accurate 
and least biased source of information, particularly for geographies with incomplete health information 
systems. We thus used SBA coverage estimates from household surveys to calculate country-specific 
adjustment factors: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠, 𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃�𝑎𝑎, 𝑐𝑐,𝑡𝑡� +  �𝛽𝛽𝑘𝑘𝑆𝑆𝑘𝑘

2+𝐵𝐵

𝑘𝑘=2

 +  𝜀𝜀𝑐𝑐,𝑡𝑡 

where 𝑃𝑃𝑠𝑠, 𝑐𝑐,𝑡𝑡 is the survey-based estimate for SBA coverage (𝑠𝑠) in country 𝑐𝑐 for year 𝑡𝑡; 𝑃𝑃�𝑎𝑎, 𝑐𝑐,𝑡𝑡 is the 
administrative estimate for coverage in country 𝑐𝑐 in year 𝑡𝑡; 𝑆𝑆𝑘𝑘 is a spline basis used to capture the secular 
trend in coverage; 𝛽𝛽1 is the estimated adjustment factor used to correct for the administrative bias; and 𝜀𝜀 
is the error term for country 𝑐𝑐 in year 𝑡𝑡. 

To quantify uncertainty for bias-adjusted estimates from the mixed-effects models described above, we 
calculated prediction error, 𝑃𝑃𝑃𝑃� , as follows: 

𝑃𝑃𝑃𝑃� = 𝑋𝑋2𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽) 

where 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽) is the variance for the estimated fixed-effects coefficient of the adjustment factor and 𝑋𝑋 is 
the independent variable. Proper estimation of prediction errors is crucial as the data synthesis 
procedure, Gaussian process regression (GPR) (as described in the subsequent section), accounts for 
uncertainty from point estimates and bias adjustments when generating fitted values. More weight is 
given to data with less uncertainty. Prediction errors estimated from the bias adjustment were 
incorporated into the data variance and propagated through the GPR step to obtain estimates of SBA 
coverage and uncertainty intervals (UIs). 
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To assess the accuracy of our estimates in the bias adjustment, we performed cross-validation analyses 
by randomly holding out 20% of the sample and, if available, the corresponding administrative estimates 
for the given indicator of the same country and year, 10 separate times. We computed the average root 
mean squared errors (RMSE) across each country. Error in the bias adjustments was calculated as the 
mean difference between the adjusted administrative estimate for a given country, year, and 
corresponding survey-level estimates (which were considered the “gold-standard”). 

 
Trend estimation  

We used a spatiotemporal Gaussian process regression (ST-GPR) to synthesize point estimates from 
multiple data sources and derive a complete time series for SBA coverage. This method has been used 
extensively in GBD and related studies, and accounts for uncertainty pertaining to each point estimate 
while borrowing strength across geographic space and time.10, 11,15,16 Briefly, we assumed the Gaussian 
process was defined by a mean function m(•) and covariance function Cov(•).  

We estimated the mean function using a two-step approach. Specifically, 𝑚𝑚𝑐𝑐(𝑡𝑡) can be expressed as: 

𝑚𝑚𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑋𝑋 + ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) 

where 𝑋𝑋𝑋𝑋 is a linear model and ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) is a smoothing function for the residuals; and 𝑟𝑟𝑐𝑐,𝑡𝑡 is derived from 
the linear model. The following linear model was used for estimating SBA: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1𝐻𝐻𝐻𝐻𝐻𝐻c,t +  𝛼𝛼𝑐𝑐 +  𝛾𝛾𝑅𝑅[𝑐𝑐] +  ωSR[c] +  𝜀𝜀𝑐𝑐,𝑡𝑡 
 
where 𝑃𝑃𝑐𝑐,𝑡𝑡 is SBA coverage for country 𝑐𝑐 year 𝑡𝑡; 𝐻𝐻𝐻𝐻𝑄𝑄𝑐𝑐,𝑡𝑡 is value of the Healthcare Access and Quality 
Index16 for country 𝑐𝑐 and year 𝑡𝑡; 𝛼𝛼𝑐𝑐, 𝛾𝛾𝑅𝑅[𝑐𝑐], and ωSR[c] are country, region, and super-region random 
intercepts, respectively. These estimates were then modeled through ST-GPR. 

Random draws of 1,000 samples were obtained from the distributions above for every country for a given 
vaccine. Ninety-five percent uncertainty intervals were calculated by taking the ordinal 25th and 975th 
draws from the sample distribution.  

To assess the accuracy of our modeled estimates, we performed cross-validation analyses using a 
knockout structure as previously described17. ST-GPR hyperparameters were selected on models that 
minimized the overall root-mean squared error (RMSE) of the model across a set of 10 knockouts.  
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3.2.1 and 3.2.2 Under-5 Mortality and Neonatal Mortality SDG Capstone 
Appendix 
 

Flowchart 

Input Data & Methodological Summary 
Indicator definition 
This modeling strategy encompassed the indicator associated with under-5 mortality (3.2.1) and neonatal 
mortality (3.2.2) 

Indicator 3.2.1 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.2, by 2030, end preventable deaths of newborns and children under 5 years of age, with all countries 
aiming to reduce neonatal mortality to at least as low as 12 per 1000 live births and under-5 mortality to 
at least as low as 25 per 1,000 live births, is measured using SDG Indicator 3.2.1, under-5 mortality rate 
(probability of dying before the age of 5 per 1,000 live births). 
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Indicator 3.2.2 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.2, by 2030, end preventable deaths of newborns and children under 5 years of age, with all countries 
aiming to reduce neonatal mortality to at least as low as 12 per 1000 live births and under-5 mortality to 
at least as low as 25 per 1,000 live births, is measured using SDG Indicator 3.2.2, neonatal mortality rate 
(probability of dying during the first 28 days of life per 1,000 live births). 

 
Input data 
Vital registration from Causes of Death team 

Data were provided by the GBD causes of death (CoD) research team and were aggregated into total age-
sex-specific all-cause mortality for each location-year. This aggregation occurred after the data were 
adjusted and mapped to the GBD cause list. 
Data intended for use in causes of death modeling were assessed for quality with respect to consistency 
of cause fractions, diagnostic accuracy, and missing data, whereas for all-cause mortality modeling it was 
more important that data were fully representative of the given estimation area and were consistent with 
other all-cause mortality data sources. Thus, there were cases in which VR data prepared for cause-
specific modeling could be used in all-cause modeling or had to be adjusted based on degree of 
completeness before being used. 
In our vetting of CoD VR data, we dropped points with a more than 1% difference from corresponding 
points in the WHO database. There were instances where VR data used in cause-specific mortality 
analysis had been collapsed to Basic Tabulation List (BTL) format rather than in full cause classification list 
format (e.g., ICD9). In some of these cases, we elected to use WHO data instead. 
 

Vital registration, sample registration systems, and Disease Surveillance Points from other sources 

We endeavored to include all available data from VR systems as inputs in our all-cause mortality 
estimation process. To achieve this, we utilized a number of multi-country VR sources, including the WHO 
Mortality Database, the Human Mortality Database, United Nations Demographic Yearbooks, and OECD 
(Organisation for Economic Co-operation and Development) databases. These multi-country sources 
were regularly updated in our systems when new data were added. Beyond multi-country sources, for all 
ongoing national VR systems (for example, the USA National Vital Statistics System) we cataloged all data 
sources from each system where possible. 
Some countries that do not have well-performing VR systems implement sample registration systems that 
are incomplete by design. We made use of these data, paying close attention to the proper weighting of 
sampled data and consistency with other representative sources. We have systematically extracted data 
from the Sample Registration System Statistical Report series published by the Registrar General of India. 
For the Disease Surveillance Points (DSP) system of China, we obtained both national and provincial level 
DSP data through a data usage agreement with the Chinese Center for Disease Control and Prevention. 
Census data were systematically extracted from Demographic Yearbook series, Integrated Public Use 
Microdata Series (IPUMS), and statistical reports from the national statistical bureaus. 

Under-5 populations and live births 
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For GBD 2017, live births were produced as part of the population and fertility estimation. 

Complete birth history microdata 

Complete birth histories (CBHs), the preferred method for data collection on child mortality in the 
absence of VR, rely on administering surveys to mothers. The questionnaires ask about all living and 
deceased children, including date of birth, survival status, and date of death. These modules were 
included in many routine survey series, including the World Fertility Surveys (WFS), Demographic and 
Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and many national survey programs. 
When available, we downloaded and used microdata that included individual-level survey responses as 
opposed to tabulated results. 

Complete birth history tabulated data 

In some instances, tabulated records from reports became available before survey microdata, and we 
incorporated those data points into our database of 5q0 data as well. However, as microdata became 
available, we updated with point estimates from our processed microdata rather than the tabulated 
report estimates.  

Summary birth history microdata  

Summary birth history (SBH) questionnaires are a shorter alternative to complete birth histories. Instead 
of asking in detail about each child, summary birth histories simply ask mothers how many children they 
have given birth to and how many of the children have died. The questionnaires are shorter and can be 
more easily attached to other surveys. Often, censuses and MICS surveys contain summary birth histories. 
For GBD, we compiled all available SBH data with microdata, which enabled us to apply the updated SBH 
method to produce a more accurate and timely assessment of U5MR.1 

Summary birth history tabulated data 

In cases where we did not have access to the microdata on SBH modules from surveys and censuses, we 
utilized the reported estimates of U5MR from survey or census reports and outliered the first two data 
points based on mothers aged 15-19 and 20-24. 

Under-5 age-sex patterns from VR/SRS/DSP 

VR systems were the primary source of data for the under-5 age pattern of mortality in high-income 
countries. Often, these data were classified into several age groups: early neonatal (0-6 days), late 
neonatal (7-27 days), post-neonatal (28-364 days), and 1 to 4 years. Some country-years of data had 
other age groupings with less specificity, with the early and late neonatal age groups combined, or all of 
the under-1 age groups combined. Sample Registration Systems (SRS) also provided data for the age-sex 
patterns of under-5 mortality in several countries (notably India and Bangladesh). The DSP system in 
China provided data on age-sex under-5 mortality as well. 

Under-5 age-sex patterns from complete birth history 

In many countries without VR systems, CBH surveys were used to obtain age-sex patterns of mortality in 
under-5 age groups. These sources are described above in the “CBH microdata” section. For all CBH 
microdata sources, we applied direct estimation methods to obtain probabilities of death for each of the 
under-5 age groups. Within each survey, where each observation is a child recalled by a mother, 
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observations were grouped into 5-year groups in time to provide a data point of probability of death for 
each of the under-5 age-sex groups. Recall was cut off 15 years before the survey, limiting data points 
estimated from the survey to the 15 years prior. All of these estimates were then put in the database of 
estimates for the age-sex pattern of under-5 mortality. 

 

Modeling Strategy 
VR prioritization 

Our continual evaluation of VR data sources led us to develop a general hierarchy of preferred VR 
sources. When considering which of multiple sources to use for a given location-year, we preferred to 
first use WHO data from GBD cause-specific mortality estimation, then unadjusted WHO data, then 
Human Mortality Database (HMD) data, then UN Demographic Yearbook data. There were exceptions to 
this hierarchy where we had reason to believe that there were quality issues with a certain source. For 
instance, where available we preferred to use HMD VR over WHO data for Germany, Taiwan, and Spain 
due to WHO data producing mortality rates that were inconsistent with previously established trends. 
Single-country VR sources were evaluated based on consistency with other data sources and also VR 
system documentation. 
 
Identify VR under-enumeration for bias correction 

The approach to estimating the completeness of VR systems for deaths under age 5 was the same as that 
of the previous three GBD studies. However, the VR-specific correction in previous GBD rounds has been 
removed for GBD 2017. Most biased VR is corrected in the mixed effects non-linear model outline in 
section 2.2.6.  

Similar to previous GBD rounds, there were countries for which only VR data were available and the VR 
systems were considered biased. This was a problem particularly in English-speaking Caribbean countries, 
so for these countries we adjusted 5q0 estimates from VR using the regional average VR bias in a given 
year for those countries with both VR and survey 5q0 estimates. The countries for which VR systems were 
adjusted using this method include Antigua and Barbuda, Bahamas, Barbados, Bermuda, Dominica, 
Grenada, Saint Lucia, and Saint Vincent and the Grenadines. While there was no direct evidence on the 
level of VR bias in these countries, assuming they were complete when similar countries in the region 
exhibited under-registration seemed unwarranted. 

Biennial 5q0 estimates 

Complete birth history 5q0 computation 
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Microdata (individual-level survey data) from CBH yielded direct calculation of death numbers and 
probabilities of death in the under-5 age group. Observations were grouped into two-year intervals such 
that biennial estimates of 5q0 were obtained from these survey data. In GBD 2017, we unpooled surveys 
for our analysis, whereas surveys were pooled by series in GBD 2013.3 Instead of grouping observations 
from all DHS complete birth history questionnaires from a country into one full set of observations and all 
MICS observations from multiple survey years into another full set of observations, we analyzed each 
survey separately by location (e.g., DHS 2012, DHS 1996, MICS 2002). This allowed for a greater ability to 
address known data quality issues in specific surveys. To compensate for the decreased sample size and 
to generate greater stability in the unpooled data points, we created two-year estimates of under-5 
mortality, pooling observations over two-year periods instead of single years. 
 
Tabular complete birth history processing 
In some instances, microdata from surveys were not available. If survey reports could be obtained but the 
microdata were not available for us to do our own calculations to obtain 5q0, we used report data point 
estimates. These estimates were added directly to the under-5 mortality database. 

Summary birth history time series method 

Summary birth history method from microdata 
Rajaratnam and colleagues have developed an updated summary birth history method that is able to 
provide more accurate and timely estimates of U5MR from micro data on SBH from surveys and 
censuses.1 
 
Summary birth history analysis from tabular data  
When only tabular data are available for the numbers of children ever born and number of children that 
have died by mother’s age, we apply the Maternal Age Cohort model from the method developed by 
Rajaratnam and colleagues.1  

5q0 data synthesis, model running, and bias correction  

Data synthesis using ST-GPR and bias correction 

We applied the child mortality estimation methodology as reported by Wang and colleagues.3 Based on 
the under‐5 mortality data synthesis model for the Global Burden of Disease Study 2010,4,5 2013,3 
2015,6 and 20167 we incorporated data bias adjustment into the modeling process. Specifically, we 
included a fixed effect for source type across all locations to detect systematic differences in the level of 
child mortality, controlling for covariates for one source type versus another. The groups of sources used 
to make this adjustment are listed below. In addition, we included a random effect for each country‐
source. By choosing a reference source (country-by-country or using the mean of a set of sources, we 
adjusted on a country-by-country basis for the problem of compositional bias created by substantial 
source-specific non‐sampling error. Reference sources were not adjusted, even if multiple sources were 
used as reference. Once the systematic difference in sources were removed, we were able to avoid 
estimating false trends due to partial overlap of sources with different levels of non‐sampling variance. 
We then applied the combination of non-linear mixed effects model, spatiotemporal regression, and GPR 
to synthesize raw child mortality data after data bias adjustment to obtain consistent time series 
estimates of mortality with 95% uncertainty intervals for every country. 
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We apply the child mortality estimation methodology as reported by Wang et al.4 Based on the under‐five 
mortality data synthesis model for the Global Burden of Disease Study 2010, 2013, 2015, and 2016 we 
have incorporated data bias adjustment into the modeling process. Specifically, we have included a fixed 
effect for source type across all locations to detect systematic differences in the level of child mortality, 
controlling for covariates for one source type versus another. The groups of sources to make this 
adjustment are listed in the table below. In addition, we include a random effect for each country‐source. 
By choosing a reference source country-by-country or using the mean of a set of sources, we can adjust 
on a country-by-country basis for the problem of compositional bias created by substantial source-
specific non‐sampling error. Once the systematic difference in sources is removed, we are able to avoid 
estimating false trends due to partial overlap of sources with different levels of non‐sampling variance. 
We then apply the combination of non-linear mixed effects model, spatial-temporal regression and 
Gaussian process regression to synthesize raw child mortality data after data bias adjustment to obtain 
consistent time series estimates of mortality with 95% uncertainty intervals for every country.  
 

Table: Source types used in child mortality bias correction 
Data Source Type 

Complete Birth History-Demographic and Health Survey 
Complete Birth History-AIDS Indicator Survey and Malaria Indicators Survey 
Complete Birth History-World Fertility Survey 
Complete Birth History-Multiple Indicator Cluster Survey 
Complete Birth History-Census 
Complete Birth History-Other survey Series 
Summary Birth History-Demographic and Health Survey  
Summary Birth History-Multiple Indicator Cluster Survey 
Summary Birth History-Other survey series 
Summary Birth History-AIDS Indicator Survey and Malaria Indicators Survey 
Summary Birth History-Census 
Summary Birth History-World Fertility Survey 
Vital Registration/Sample Registration/Surveillance- complete 
Vital Registration/Sample Registration/Surveillance- incomplete 
Household Death Recall-Other survey series 
Household Death Recall-Census 
Household Death Recall – incomplete Vital Registration/Sample 
Registration/Surveillance 

 
 
Mixed effect non-linear model and the bias adjustment for raw U5MR sources 

In this stage, we used a nonlinear mixed effects regression to estimate data bias and provide first stage 
predictions.  
  The nonlinear mixed effects regression model is 

5𝑚𝑚0𝑐𝑐𝑐𝑐𝑐𝑐 = exp[(𝛽𝛽1 +  𝛾𝛾1𝑐𝑐) ∗ log�𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐� + (𝛽𝛽2 +  𝛾𝛾2𝑐𝑐) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐 + 𝛾𝛾𝑐𝑐 + 𝛾𝛾𝑐𝑐𝑠𝑠  + 𝛼𝛼𝑡𝑡] +
𝛽𝛽3 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑐𝑐 +  𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐  
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where c is country, y is year, s is source, and t is source type; each source was categorized into one of 17 
source types across all countries, as listed in the table above. 
Additionally, 

5m0 is under five mortality rate 

 LDI is lagged distributed income per capita 
 education is mean years of education for women of reproductive age (15-49 years) 

HIV is death rate due to HIV in age groups 0-4 
 γ is a random effect 

α is a fixed effect on source type across countries 
 β i  is a fixed covariate coefficient 
 ε is the residual 
 
For each country, we rely on expert opinion to choose a source, or combination of sources, which are 
believed to be the least biased. If a country has vital registration which we deem to be complete 
(described in detail in an earlier section), this is the reference source. If a country does not have complete 
vital registration, but has DHS estimates from complete birth histories, these were chosen as the 
reference source. If a country has neither of these types of data or DHS surveys are deemed unreliable, 
we assigned the surveys conducted after 1980, in combination, as the reference (incomplete vital 
registration data were not included). Additionally, in many countries we chose other surveys as the 
reference. For accurate estimation, it is important to have local knowledge on specific data sources’ 
accuracy. All-cause mortality experts draw from their familiarity with data quality to help us to choose the 
reference category. 
Each data source has an associated random effect as well as a source type fixed effect. The values of 
these random and fixed effects for the reference sources are deemed to be the true deviation from 
unbiased mortality level. In countries with multiple high-quality sources, the mean of the random and 
fixed effects from these sources is taken as this true deviation. We adjusted all other sources by including 
these reference values for the random and fixed effects values instead of those estimated for each 
individual source, as shown below.  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎5𝑚𝑚0,𝑐𝑐𝑐𝑐𝑐𝑐 = exp[(𝛽𝛽1 +  𝛾𝛾1𝑐𝑐) ∗ log�𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐� + (𝛽𝛽2 +  𝛾𝛾2𝑐𝑐) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐 + 𝛾𝛾𝑐𝑐 + 𝛾𝛾𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐 +
𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐] + (𝛽𝛽3 +  𝛾𝛾3𝑐𝑐) ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑐𝑐 +  𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐  
 

Spatio-temporal smoothing 

The spatio-temporal stage smooths the residuals between the predicted time series of 5q0 and the 
adjusted raw data over time and across countries in the same GBD region. The predicted time series for 
this smoother was obtained from the equation below; no random effects or survey type fixed effects are 
included. 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖5𝑚𝑚0,𝑐𝑐𝑐𝑐 = exp[𝛽𝛽1 ∗ log�𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐� + 𝛽𝛽2 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐 +  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] + 𝛽𝛽3 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐𝑐𝑐  
 
We first found the residuals between the predicted time series, above, and the adjusted points. We then 
applied a combination of smoothing functions to these residuals. For each country year, we weighted all 
the data points in this region based on their proximity to this country-year in space and time. We gave 
99% of the weight to in-country residuals, and 1% of the weight to out-of-country residuals. Additionally, 
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we used a modified tricubic window, as specified below, to give more weight to points closer in time, and 
less weight to points further in time.  

wt = �1 − � |rt−rest|
1+argmaxt|rt−rest|

�
λ
�
3

  

 
The rt and rest terms are, respectively, the year of interest and the year of the residual being weighted. 
The argmaxt|rt - rest| term is the maximum distance between the year of interest and a residual within 
the region. The λ parameter in this weighting function dictates how quickly the weights fall off as the 
distance in time increases: a larger λ implies that the assigned weights will diminish slowly with time, 
while a smaller λ allows the weights to diminish more rapidly with time.  
λ values were chosen using the parameter selection process described below.  We then created one 
estimate of the smoothed residuals using a linear fit to this weighted data; this is similar to a Loess fit. 
Additionally, we created a second estimate of the smoothed residuals by calculating the weighted 
average of this data.  
We then combined these two estimates for a final estimate of the smoothed residuals. In data-dense 
countries, more weight was given to the local linear fit; in data sparse countries, more weight was given 
to the weighted average. The equation for this is as follows. 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑘𝑘 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + (1 − 𝑘𝑘) ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

where 𝑘𝑘 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

 
Finally, the smoothed residuals were added back to the predictions from above; this smoothed 
approximation to the adjusted data was used as the prior for the Gaussian process regression, described 
below. 
Third stage: Gaussian process regression (GPR) 
The output of the space-time local smoother was used as a prior for the Gaussian process regression, 
which produced a final time series of point estimates, as well as confidence bounds. Parameters for the 
GPR were chosen through cross-validation described in section 1.5.E. 
The model for the Gaussian process regression is shown below, where µt is the true log10(5q0) at time t, 
f(t) is the baseline mortality risk, and St captures excess mortality due to war and disasters. St is estimated 
independently of f(t). M and C describe the Gaussian process, giving the mean and covariance, 
respectively. 

 
µt = f(t) + St 

f(t) ~ GP(M, C) 
 

We specified a prior distribution for f(t) from the spatio-temporal regression, and a likelihood function 
which describes the data generation process; the specified prior distributions and likelihood function are 
described below. We then used Markov Chain Monte Carlo (MCMC)5 to approximate the posterior 
distribution of f(t) which also incorporates information from the observed empirical estimates of adult 
mortality. An MCMC chain of length 5000 was produced; the first 3000 samples were discarded and the 
remaining 2000 were thinned by a factor of 2 for a total of 1000 simulations retained. The reported best 
estimates and confidence intervals were generated from the mean and the 2.5th and 97.5th percentiles of 
the 1000 samples, respectively. 
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The prior distribution of f(t) can be described in terms of the mean prior—the prior for M—and the 
covariance prior—the prior for C. We utilized the second stage predictions as the mean prior and used a 
Matern covariance function to describe the covariance prior. 
  

Likelihood 

The likelihood describes the probability of observing the data given a particular set of parameters. As 
shown in the equation below, we used a normal model for describing the probability of observing a 
particular value of log(5q0) where the mean is given by f(t) and the variance by Vt, the data variance.  

log10( q0t) ~ Normal(f(t), Vt)5
   

Data variance was calculated for each empirical observation of 5q0 and incorporated both sampling and 
non-sampling variation. The method for calculating the data variance depended on the type of data:  

1. For estimates derived from complete vital registration data we assumed that there was no 
non-sampling variance and included only sampling variance as computed from a binomial 
model. We set N equal to the national population aged 0 to 5 years and p equal to the 
mortality rate, 5m0. We calculated the variance of 5m0 from p(1-p)/N and then transformed 
this to the variance of log10(5q0) using the delta method.6  

2. For estimates derived from incomplete vital registration data, we wanted to include not only 
sampling variance but also the non-sampling variance that arises from uncertainty in the 
completeness estimate. For these data, the total data variance was given by the sum of the 
sampling variance (calculated as for complete vital registration data) and the variance of the 
completeness estimate;  

3. For estimates derived from complete birth histories  we generate 1000 simulations of 5q0, 
convert these estimates into log10 space and calculate the sampling variance from these 
1,000 simulations;  

4. For estimates derived from summary birth histories we use the standard error from the mean 
residuals;  

5. For estimates not covered under the above 4 calculations the missing data variance is 
determined as the maximum standard error from non-VR points in the country, if the data 
variance is still missing it is calculated as the maximum standard error from non-VR data in 
the GBD region.   

6. Finally, for each source type, we calculate the within-source-type variance of the source-
specific random effect. This additional non-sampling variance is then converted to log10 space 
and added to the variance as calculated above for all data points not classified as complete 
vital registration.  

Hyper-parameter selection for under-5 mortality rate ST-GPR 

For GBD 2017, hyperparameters were selected based on a newly-created data density score for a given 
location.  The data density score was calculated for each location based on the number of deaths from VR 
sources as well as the number of unique CBH and SBH available.  The data density score was computed 
using the following steps: 
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1. Calculate complete VR score: this component of data density was computed based on the 
number of deaths from an unbiased VR sources in the location.  Using the death counts, we 
capped the number of deaths at 500 for each year and then divided that number 500.  The result 
was a score for each year between 0 and 1 where 1 represents a complete VR system with at 
least 500 registered deaths.  To get the final complete VR score for a location, we added up the 
score for each year across the full time series.  The result was a complete VR score between 0 
and 68 (the range of our full 1950-2017 estimation time series). 

2. Calculate incomplete VR score: this component of data density is computed in the same manner 
as the complete VR score using biased VR instead of unbiased VR. 

3. Total CBH sources: this is simply a count of the unique complete birth histories for a location 
4. Total SBH sources this is simply a count of the unique summary birth histories for a location 
5. Once the intermediate calculations were completed, the following formula was used to compute 

the final data density 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑣𝑣𝑣𝑣_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠′ +  (0.5 ×  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑣𝑣𝑣𝑣_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠)  +  (2 ×  𝑐𝑐𝑐𝑐ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  

+  (0.25 ∗  𝑠𝑠𝑠𝑠ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
Once the data density for a location was calculated, we assigned hyperpameters: 
 
Table A 

Data Density Zeta Lambda Scale 
0 to 9 0.7 0.7 15 
10 to 19 0.7 0.5 15 
20 to 29 0.8 0.4 15 
30 to 49 0.9 0.3 10 
50 plus 0.99 0.2 5 

 

Identify and remove outliers 

There are several important quality-control steps in reviewing child mortality data and estimates. First, 
data points from years in which fatal discontinuities occurred are outliered, unless they are VR data 
points with sufficient information that the fatal discontinuities can simply be subtracted out of the VR 
data. The intent is to capture the underlying mortality risk rather than large stochastic variations. These 
fatal discontinuities are then added on in a later step (see section 5). Secondly, we outlier data sources 
with quality concerns such as the Afghanistan DHS from 2010. Our extensive collaborator network allows 
for review of sources, and collaborators can raise concerns over known issues with data sources about 
which they have expert knowledge. 

Rake subnational estimates to national level (excluding South Africa) 

The estimation process for 5q0 does not enforce consistency between subnational estimates and national 
estimates. To ensure consistency throughout the GBD hierarchy, we rescaled the subnational estimates 
to the national level by population-weighting to get an implied national estimate from the subnational 
estimates, creating a scalar of the national-level estimate from GPR to the aggregated subnational 
estimates, and then multiplying all of the subnational estimates by this scalar to obtain the scaled 
estimates. In most cases, we considered national-level estimates to be more reliable, so we chose this 
strategy of subnational scaling. In locations with high-quality vital registration data, this scaling has a 
minimal effect, but the effect can be greater in locations with more subnational units and variable-quality 
data. In South Africa, it was essential that the state-specific mortality patterns be consistent with HIV 
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models is essential, since such a large part of the trend is driven by deaths due to HIV/AIDS. In this case, 
instead of scaling provincial-level estimates to national-level GPR estimates, we aggregated province-level 
GPR estimates to generate the national-level estimates. 

Review estimates for quality 
Estimates of 5q0 from the ST-GPR process were reviewed in comparison to UNICEF estimates from their 
2015 revision and GBD 2015 results. Any differences were traced to either changes in available data or 
changes induced by changes in hyperparameters or input covariates. Revisions were made through this 
review process and through expert consultation with the GBD mortality collaborator network. 
 
Under-5 mortality rates with HIV 

The U5MR ST-GPR process generates U5MR for all GBD 2017 locations that is inclusive of the impact of all 
causes of death excluding fatal discontinuities, which are added in a separate step (see section 5).  

HIV-free 5q0 

As a result of the Non-linear mixed effects model, we are able to generate HIV free 5q0 counterfactuals 
where the crude death rate due to HIV in age group 0-4 is set to zero. This is a crucial input to the GBD 
model life table system as described in section 3.  

Under-5 age pattern model estimation 

The process used to break down under-5 mortality into age- and sex- specific groups has been previously 
described.7  The current process is largely similar but has been modified to improve the accuracy of 
predictions for countries affected by HIV/AIDS. As pointed out by Bradshaw et al., neonatal mortality 
tends to be overestimated if the all-cause child mortality rate is used as the only predictor.8   We use a 
two-stage modeling process to generate sex-specific estimates of early neonatal (days 0 to 6), late 
neonatal (days 7 to 27), post-neonatal (the remainder of the first year), and childhood (ages 1 to 4) 
mortality. First, the ratio of male to female under-5 probability of death is estimated, then age- and sex-
specific mortality estimates are generated using this ratio. To fit models to obtain estimates, data from 
vital registration, sample vital registration, and complete birth histories are converted to mortality risks 
for specific age groups. Sources have differing levels of age specificity and at least include infant 
(composed of early neonatal, late neonatal, and post-neonatal) and child mortality, but can include all 4 
smaller age groups. The two models – first the sex model, then the age-specific and sex specific model – 
are fit on the data. 
The sex model predicts the ratio of male probability of death under age 5 (5q0) to female 5q0 for each 
country i in region j in year t.  The data are ordered by observed 5q0, and categorized into 20 evenly sized 
bins. Then, the model is fit to the data as described in the equation below.  

   � Male 𝑞𝑞05
 

Female 𝑞𝑞05
 �

jit
= β + γ 𝑞𝑞05

  bin + γj + γi + εjit      

The ratio is predicted by nested location and region random effects γ i and γ j, a random effect on the 5q0 

bin, and an intercept term, β. A Loess regression is then used to smooth the estimated γ 𝑞𝑞05
  bin on 5q0, 

creating a continuous γ′ 𝑞𝑞05
  bin.  Then, the equation below is used to predict the ratio of male to female 

5q0: 

 � Male 𝑞𝑞05
 

Female 𝑞𝑞05
 �

jit
= β� + γ′ 𝑞𝑞05

  bin � 𝑞𝑞05
 

jit� + γ�j + γ�i   
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The male and female 5q0 values are found using the system of equations that includes the model above 
and equation below, where rbirth is the sex-ratio at birth. 

𝑞𝑞05
 = � 1

1+rbirth
� ∗ (female 𝑞𝑞05

 ) + � rbirth
1+rbirth

� ∗ (male 𝑞𝑞0)5
   

Age-specific models are then fit for each age group on sex-specific data.  A separate model is fit for each 
age group yielding five models for each sex: early neonatal, late neonatal, postneonatal, infant, and child. 
The log of the probability that an under-5 death occurs in a given age group is modeled instead of the 
mortality risk, simplifying the scaling process and restricting risks to be between 0 and 1. Because 
evidence suggests HIV has differential effects on different under-5 age groups,8,9 the crude death rates 
from HIV/AIDS in the under-5 age group were included in the model. We used crude death rate due to 
HIV from the GBD 2015 model (see section 3). The inclusion of this covariate improves both the fit and 
prediction of the model in countries with HIV. In addition, in this version of GBD, we added two new 
covariates to improve model fit. First, we included the maternal education covariate that is also used in 
the 5q0 first-stage model. Second, we used the completeness of the source-specific 5q0 estimate for the 
data-point used in the regression. This completeness was calculated by taking the source-specific 5q0 
point estimate and dividing by the final 5q0 estimate from GPR. The functional form of the model is 
below. 

log(Pr(death at age y|u5 death)jit) = β1 + β2 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 + β3 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀.𝐸𝐸𝐸𝐸.𝑖𝑖𝑖𝑖+ β4 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 +
 γ 𝑞𝑞05

  bin + γj + γi + εjit  
Similar to the sex model, the sex-specific age prediction uses 5q0 bins and smooths the random effect on 
the bin using 5q0. The prediction equation for age y in country in region j at time t is seen below, with 
nested random effects on country (γ�i) and region (γ�j), an intercept term (β�1), a smoothed random effect 
on 5q0 bin (γ�′ 𝑞𝑞05

  bin( 𝑞𝑞05
 

jit)), a coefficient on the under-5 crude death rate from HIV (β�2), a coefficient on 

maternal education (β�3), and a coefficient on completeness (β�4): 
log(Pr(death at age y|u5 death)jit) = β�1 + β�2 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 +  β�3 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀.𝐸𝐸𝐸𝐸.𝑖𝑖𝑖𝑖+  β�4 ∗ 1 +  γ�′ 𝑞𝑞05

  bin( 𝑞𝑞05
 

jit) +
γ�j + γ�i   13 

Note that for prediction, the completeness coefficient gets multiplied by 1 instead of a source-specific 
completeness, as we seek to predict based on a hypothetically complete source. 
Once each of these predictions is made by age group, they are rescaled such that the probabilities of 
death in the Early Neonatal, Late Neonatal, Post Neonatal, and 1-4 year age groups aggregate to the 5q0 
estimates from the under-5 model. 

Identify and remove outliers 
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There are several criteria for removing outliers for the under-5 age-sex pattern model. First, sources may 
be marked as outliers if they contain low population numbers or very few deaths. If data come from vital 
registration and the under-5 population of the country is less than 20,000 person-years, then the data are 
outliered. If the total number of deaths in a VR system among both sexes under-5 is less than 200, the 
data are also outliered. VR data that are considered incomplete are marked as outliers. To be considered 
incomplete, the 9-year rolling average of the VR data 5q0 value is compared to the 9-year rolling average 
of the 5q0 estimates. Then, for a given data-year, the value of 5q0 in the raw data are compared to our 
final 5q0 estimate. A value of 90% would be considered incomplete and outliered, unless the ratio of the 
9-year rolling average above is above 90% complete. Any data that are chosen as outliers as part of the 
5q0 analysis are also marked as outliers in the age-sex pattern analysis. If the female-to-male ratio of 5q0 
in the raw data are less than .5 or greater than 2, the data are outliered because of an implausible sex 
ratio. If a country has both VR and CBH data, they are typically both used, unless the two conflict, in which 
case the VR data are used. CBH data points more than 15 years before the survey are outliered. Lastly, 
some data points are manually outliered. For example, the definition of live birth changed in some 
Eastern European countries in the 1990s, leading to inconsistencies. For these examples, age group data 
in ages that would include childbirth deaths (early neonatal, neonatal, and ages 1-4) are outliered if the 
definition of live birth contains a minimum weight, as it did in some of these locations. 

Under-5 age-sex splitting model application 

The prediction method from the age-specific model is described above in 1.11. First, the results of the sex 
model are applied, yielding sex-specific 5q0 estimates. Once age-sex-specific predictions of the log 
conditional probability of death are made, these are exponentiated and rescaled so that they some to 1. 
First, the under-1 and 1-4 conditional probabilities are scaled to add to 1. Then, the early neonatal, late 
neonatal, and post neonatal conditional probabilities are scaled to the under-1 conditional probability. 
Then, the probabilities of death can be calculated so that they properly aggregate to the final 5q0 
prediction. For example, to calculate the probability of death in the early neonatal age group, the 
rescaled conditional probability of early neonatal death given under-5 death is multiplied by the 
probability of under-5 death. Then, to obtain the probability of death in the late neonatal age group, the 
rescaled conditional probability of death in the late neonatal age group given under-5 death is multiplied 
by the probability of under-5 death and then divided by the probability of survival to the beginning of the 
age group, and so on. Equations below represent this process, where enn represents early neonatal and 
lnn represents late neonatal. 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒 = Pr(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 |𝑢𝑢5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ) ∗ 5𝑞𝑞0 
𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙 = Pr(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 𝑖𝑖𝑖𝑖 𝑙𝑙𝑛𝑛𝑛𝑛 |𝑢𝑢5 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ) ∗ 5𝑞𝑞0/(1 − 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒) 

The rest of the older age groups are also calculated in this manner, yielding probabilities of death in each 
of the under-5 age-sex groups. 

Update under-5 populations using fatal discontinuities 

To obtain denominators for vital registration death numbers and to estimate death numbers for age 
groups under-5, we need to obtain age-specific populations for the under-5 age groups. Taking final 
probability of death estimates including impacts of fatal discontinuities from the first run of the all-cause 
mortality process as the mortality risks, we take our input birth numbers and create person-year 
estimates of population as described in section 1.15. These person-year estimates are then the input as 
populations for the final run of the estimation process. 
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Under-5 death number estimation 

Assigning under-5 deaths to GBD age-sex groups  

To estimate the number of under-5 deaths, we run an estimation process that ages birth cohorts through 
our estimated probabilities of death. This process separates our yearly birth numbers for each location 
into week-sized cohorts and ages each of these cohorts through our mortality estimates in week-long 
steps to estimate the number of person-years and deaths in each of the early neonatal, late neonatal, 
post neonatal, and 1-4 years age groups. 
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3.3.1 HIV SDG Capstone Appendix 
 

 

Input data and Methodology 

 

Indicator definition 

This modeling strategy encompassed the indicator associated with HIV incidence (3.3.1). 

Indicator 3.3.1 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.3, by 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and 
combat hepatitis, water-borne diseases and other communicable diseases, is measured using SDG 
Indicator 3.3.1, number of new HIV infections per 1,000. 

Case definition 

Infection with the human immunodeficiency virus (HIV) causes influenza-like symptoms during the acute 
period following infection, and can lead to acquired immunodeficiency syndrome (AIDS) if untreated. HIV 
attacks the immune system of its host, leaving infected individuals more susceptible to opportunistic 
infections like tuberculosis. Although there are two different subtypes of HIV, HIV-1 and HIV-2, no 
distinction is made in our estimation process or presentation of results. For HIV, ICD 10 codes are B20-
B24, C46-C469, D84.9; ICD 9 codes are 042-044, 112-118 (after 1980), 130 (after 1980), 136.3-136.8 
(after 1980), 176.0-176.9 (after 1980), 279 (after 1980); and ICD9 BTL codes are B184-B185. 
 
Input data 
 

Household seroprevalence surveys 
Geographically representative HIV seroprevalence survey results were used as inputs to the model for 
countries with generalised HIV epidemics where available. 
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GBD demographic inputs 
Location-specific population, fertility, and HIV-free survival rates from GBD 2017 and migration data from 
UNAIDS were used as inputs in modeling all locations. 
 
UNAIDS data 
The files compiled by UNAIDS for their HIV/AIDS estimation process were our main source of data for 
producing estimates of HIV burden. These files are typically country-specific and contain both 
demographic data (population, fertility, migration, and HIV-free survival rates) and HIV-specific 
information. In all cases except migration, we substituted in our own, internally consistent demographic 
estimates. The HIV-specific information includes what is needed to run both the Spectrum and Estimation 
and Projection Package (EPP) models. Spectrum requires the following input data: AIDS mortality among 
people living with HIV with and without ART, CD4 progression among people living with HIV not on-ART, 
ART coverage among adults and children, Cotrimoxazole coverage among children, coverage of 
breastfeeding among women living with HIV, prevention of mother-to-child transmission coverage, and 
CD4 thresholds for treatment eligibility. EPP uses many of the same assumptions as Spectrum but fits a 
simpler model to HIV prevalence data from surveillance sites and representative surveys. Antenatal care, 
incidence, prevalence, and treatment coverage data from UNAIDS were used in modeling for all locations. 
We extracted all of these data from the proprietary format used by UNAIDS. 
 
For GBD 2017, we received updated national-level files for 97 countries and updated subnational-level 
files for eight countries. For many of the GBD locations not covered by these files, we had UNAIDS files 
from an earlier year of estimation, which we used again. After combining, we were left with a set of 35 
countries for which we have never received a UNAIDS file, many of them countries with small populations 
and/or low HIV prevalence. In those places, we generated regional averages of all needed inputs. This 
enabled us to run Spectrum for every GBD location. 
 
In several cases, we have modified the structure or data in the UNAIDS files. In South Africa, Russia, Iran, 
New Zealand, Great Britain, Kenya, Japan, Indonesia, Mexico, United States, Norway, Brazil, Ukraine, and 
China, which we estimate at the subnational level, we split the national-level UNAIDS file into subnational 
datasets using assumptions from GBD 2017 demographics and GBD 2016 HIV prevalence. We also 
estimate at the subnational level in Ethiopia, Kenya, and India, but have subnational-level UNAIDS files for 
these locations; however, in Kenya and India, we must split larger subnationals to more granular 
locations. The subnational locations in Ethiopia, Kenya, India, and South Africa are fit as separate 
subpopulations in EPP, so we extracted the prevalence data for the individual subnationals. In Benin, Cote 
d’Ivoire, Haiti, Moldova, Mozambique, Nigeria, Togo, Zambia, and Zimbabwe, the country files that we 
received from UNAIDS contained only subnational data without national-level aggregates. In these cases, 
we aggregated  the UNAIDS files and ran EPP and Spectrum at the national level.  
 
Vital registration data 
We used all available sources of vital registration and sample registration data from the GBD Causes of 
Death database after garbage code redistribution and HIV/AIDS mis-coding correction, except in Group 
1A countries as described below.1, 2 There are two different cause of death data sources for HIV/AIDS in 
China: the Disease Surveillance Point (DSP) system and the Notifiable Infectious Disease Reporting (NIDR) 
system. Both systems are administered by the Chinese Center for Disease Control and Prevention, but the 
reported number of deaths due to HIV is significantly lower in DSP. Therefore, we have used the 
provincial-level ratio of deaths due to HIV/AIDS from NIDR to those from DSP, choosing the larger ratio 
between years 2013 and 2014, and scaled the reported deaths in the DSP system, which is in turn used in 
the Space-Time Gaussian Process Regression (ST-GPR). 
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On-ART literature data  
Data were identified by using search terms “HIV,” “mortality,” and “antiretroviral therapy” in PubMed 
searches across the literature. To be included, studies must include only HIV-positive people who receive 
antiretroviral therapy (ART) but who were ART-naïve prior to the study. In addition, studies must report 
either a duration-specific mortality proportion or a hazard ratio across age or sex, and must not include 
children. 
 
For duration-specific survival data, studies must report uncertainty on mortality estimates or provide 
stratum-specific sample sizes and must include duration-specific data to allow for calculation of 0-6, 7-12, 
or 13-24 month conditional mortality. In addition, studies must either report separate mortality and loss-
to-follow-up (LTFU) curves, be corrected for LTFU using vital registration data or double sampling, or be 
conducted in a high-income setting. Finally, studies must report the percent of participants who are male 
and the median age of participants.  
Hazard ratio data for ages or sexes can only be used if the hazard ratios are controlled for other variables 
of interest (age, sex, and CD4 category). In GBD 2013, we identified 102 papers for extraction. For GBD 
2015, we included 13 additional studies informing the duration-specific mortality estimation process and 
26 studies informing the age and sex hazard ratio estimation process (some studies were used and 
counted in both). We also added one study to our LTFU analysis. For GBD 2016, we included 12 additional 
studies informing the duration-specific mortality estimation process and 11 studies informing the age and 
sex hazard ratio estimation process (some studies were used and counted in both). For GBD 2017, we 
included 17 additional studies informing the duration-specific mortality estimation process and 13 studies 
informing the age and sex hazard ratio estimation process (some studies were used and counted in both). 
We also included two new studies in our LTFU analysis.  
 
Off-ART literature data 
In GBD 2013, to characterize uncertainty in the progression and death rates, we systematically reviewed 
the literature on mortality without ART. We searched terms related to pre-ART or ART-naive survival since 
seroconversion.3 After screening, we identified 13 cohort studies that included the cohorts used by 
UNAIDS from which we extracted survival at each one-year point after infection. Screening for additional, 
recently published studies in GBD 2015, GBD 2016 and GBD 2017 identified no new cohort studies for 
inclusion in this analysis. 
 
Severity splits and disability weights 
The basis of the GBD disability weight survey assessments are lay descriptions of sequelae highlighting 
major functional consequences and symptoms. The lay descriptions and disability weights for HIV/AIDS 
severity levels are shown below. 
 

Severity level Lay description DW (95% CI) 

Symptomatic HIV has weight loss, fatigue, and frequent infections. 0.274 
(0.184-0.377) 
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AIDS with antiretroviral 
treatment 

has occasional fevers and infections. The person takes 
daily medication that sometimes causes diarrhea. 

0.078 
(0.052-0.111) 

AIDS without 
antiretroviral treatment 

has severe weight loss, weakness, fatigue, cough and 
fever, and frequent infections, skin rashes, and diarrhea. 

0.582 
(0.406-0.743) 

 
The proportion of people living with HIV/AIDS who are being treated with antiretroviral therapy is an 
output of Spectrum, the compartmental model used to make consistent incidence, prevalence, and 
mortality estimates described below. 
 
Modelling strategy 
 

In GBD 2017, our general modelling strategy for estimating HIV incidence, prevalence, and mortality is 
very similar to the strategy used in GBD 2016. We continue to use the Spectrum program rewritten in 
Python for GBD 2013 to facilitate faster and more flexible execution necessary for our more intensive 
computational needs. We made several changes to the modeling strategy in Spectrum comparing to the 
Spectrum software used by UNAIDS. We also, again, ran EPP using an open-source computer program in 
R written by Jeffrey Eaton.4 We ran EPP for all Group 1 countries in order to produce incidence and 
prevalence estimates that were consistent with the demographic and epidemiological assumptions used 
in GBD 2017. 
 
On-ART 
First, we corrected reported probabilities of death for loss to follow-up using an update of the approach 
developed by Verguet and colleagues.5 Verguet and colleagues used tracing and follow-up studies to 
empirically estimate the relationship between death in LTFU and the rate of LTFU.  
To create estimates of age-specific hazard ratios, we synthesized hazard ratio data in five broad age 
groups: 15-25, 25-35, 35-45, 45-55, 55-100, and modeled the data using DisMod-MR 2.1. 
 
To create estimates of sex-specific hazard ratios, we use the metan function in Stata to create estimates 
of relative risks separately by region, using female age groups as the reference group. 
The age and sex hazard ratios were applied to the study level mortality rates, accounting for the 
distribution of ages and sexes in the mortality data. We then subtracted HIV-free mortality from the 
model life table process to calculate study level age-sex HIV-specific mortality. 
 
We used DisMod-MR 2.1 to synthesize the age-sex split study level data into estimates of conditional 
probability of death over initial CD4 count.3 We modeled the data separately by duration, age, sex and 
region and added a fixed effect on whether the study was conducted prior to 2002. Finally we replaced 
our on-ART mortality rates with those estimated off treatment if they were higher.   
 
Off-ART 
Following UNAIDS assumptions, no-ART mortality is modeled as shown in the figure below.3  
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The death and progression rates between CD4 categories vary by age according to four age groups: 15–
24 years, 25–34 years, 35–44 years, and 45 years or older. We modeled the logit of the conditional 
probability of death between years in these studies using the following formula: 
 

 
 
In the formula, m is conditional probability of death from year t j to t j+1, a i  is an indicator variable for age 
group at seroconversion (15–24 years, 25–34 years, 35–44 years, and 45 years or older), t j is an indicator 
variable of year since seroconversion, and uκ is a study-level random effect.  
 
By sampling the variance-covariance matrix of the regression coefficients and the study-level random 
effect, we generated 1,000 survival curves for each age group that capture the systematic variation in 
survival across the available studies. For each of the 1,000 survival curves, we used a framework modeled 
after the UNAIDS optimization framework in which we find a set of progression and death rates that 
minimizes the sum of the squared errors for the fit to the survival curve.8, 9 

 
Changes for GBD 2017 
In GBD 2017, we chose to estimate mortality for each region in its own DisMod model, whereas previous 
GBD iterations estimated all regions together with fixed effects. This change was driven by new results 
from the IeDEA cohort collaboration which provided enough data to estimate mortality trends by CD4 in 
each region separately.6 We also added a year covariate to our LTFU model reflecting evidence from a 
large meta analysis by Zurcher and colleagues, which showed that mortality among the LTFU has declined 
in recent years.7 Finally we replaced our estimated on-ART mortality rates by rates off art, accounting for 
progression to lower CD4 categories, if the on-ART rates were higher. This was done to ensure individuals 
would not experience higher mortality when they entered treatment in spectrum. 
 
Burden estimation overview 
 

UNAIDS uses two key analytical components in their epidemiological estimation. EPP is used to estimate 
incidence and prevalence trajectories that are consistent with prevalence surveys and other prevalence 
measurements such as antenatal clinic sero-surveillance. Spectrum is a compartmental HIV progression 
model used to generate age-specific incidence, prevalence, and death rates from the EPP incidence and 
prevalence curves and assumptions about intervention scale-up and local variation in epidemiology. 
 
Due to the substantial differences in the quality and types of data available across different countries, we 
used three different methodologies to produce year-, age-, and sex-specific estimates of HIV incidence, 
prevalence, and mortality. 
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Spectrum 
For GBD 2013, we created an exact replica of Spectrum in Python. This enabled us to run thousands of 
iterations of the model at once on our computing cluster and allowed for more flexible input data 
structures. Additionally, in order to generate estimates with more realistic ranges of uncertainty than 
those in UNAIDS 2012, we adjusted all input data by uniformly sampled factors between 0.9 and 1.1. 
These changes, along with our new estimation of with- and without-ART mortality and CD4 progression 
parameters, persist into GBD 2017. 
 
Changes for GBD 2017 
For GBD 2017,  we implemented a new approach to address selection bias resulting from temporal and 
geographic variation in ANC reporting, which has the potential to skew unadjusted estimates, especially 
early in the epidemic when there are no nationally representative prevalence surveys to anchor 
estimates.14 To address this issue, the specification of the likelihood of observed ANC clinic data within EPP 
includes random intercepts for each clinic. While this approach largely accounts for differences in level 
between clinics, it does not impact the estimated shape of the epidemic. In order to leverage available 
information from nearby geographies, we developed a model for data imputation which establishes an 
epidemic peak from a first-stage model fit to ANC clinic data from a location and its nearest neighbors. The 
model included random effects for country, clinic, and time. The year of the largest random effect was used 
as tmax the location of a single knot in an imputation model which predicted the logit of prevalence in each 
year for a clinic as a linear spline. We can write this method mathematically in the following way: 

 

ρ i(t) is prevalence among ANC attending pregnant women in clinic i, with location-level intercept β0, 
linear spline S(t) with a knot at tmax, and site-specific fixed effects Xi. 

One thousand draws of imputed clinic prevalence, accounting for covariance between predictors, were 
generated for clinic-years where at least one clinic had an observation in a given year. These draws were 
used for each of the one thousand EPP runs we ran for each location. 

Additionally, for GBD 2017 we improved our sex-specific modeling strategy in Spectrum by sex-splitting 
incidence based on a model fit to the sex ratio of prevalence observed in countries with representative 
surveys. We also updated the Spectrum pediatric module to reflect changes made by UNAIDS.10 Our child 
module was revised to include CD4 progression and CD4-specific mortality rates taken from a model fit to 
survival data from IeDEA. We also updated child initiation of ART to include data on-ART distribution from 
IeDEA.   

ART Coverage Distribution 
In UNAIDS’ implementation of Spectrum, initiation of ART is constrained by eligibility criteria and 
distributed across CD4 count groups according to both the expected number of deaths and the number 
of people in each untreated CD4 count group - groups with a large proportion of PLHIV and high numbers 
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of expected deaths initiated the most individuals into treatment. Three surveys were available at the time 
of publication that contained questions which can help inform the CD4 count distribution of ART 
coverage, Uganda AIS 2011 and Kenya AIS 2007 and 2012. Both of these surveys conducted CD4 count 
measurements and include a question regarding the amount of time that an individual receiving ART had 
been enrolled in treatment. Survey data provides cross-sectional CD4 count information; however, the 
Spectrum modeling framework tracks individuals by categorical CD4 count at the initiation of treatment. 
In order to cross-walk the cross-sectional survey data into estimates of CD4 count at treatment initiation, 
we built a model using relevant cohort data which tracked changes in CD4 count after initiation of 
treatment to translate an individual’s current CD4 count and duration on treatment into CD4 count at 
initiation of treatment. The functional form for changes in CD4 count as a function of duration on 
treatment was a natural spline on duration with knots at 3, 12, 24 and 36 months, and an interaction 
between initial CD4 count and duration.  
 
After cross-walking, we predicted the probability of being on treatment as a function individual income 
(measured through an asset-based index), stratified by CD4 count, age, and sex. The results of this 
prediction were translated into country-specific age-sex-year-CD4 count probabilities of coverage using a 
conversion factor between individual income and LDI. We used stochastic frontier analysis to constrain 
the maximum possible coverage for a given degree of income and CD4 count. Predicted probabilities of 
coverage were input to Spectrum to inform the distribution, and not the overall level, of ART treatment 
by CD4 count. Spectrum converted counts of expected individuals on treatment in each CD4 count group 
and scaled the distribution across CD4 count groups to match the input data on the number of people on-
ART coming from UNAIDS country files. In cases where the predicted number of individuals initiating 
treatment exceeds the total number of untreated individuals in a CD4 count group, we reallocate 
treatment evenly to other CD4 count groups. 
 
Countries with seroprevalence surveys and antenatal clinic data (Groups 1A and 1B) 
We identified 50 countries – as well as subnational locations in India, Kenya, Ethiopia, and South Africa – 
with at least 0.5% adult HIV prevalence and at least one geographically representative HIV seroprevalence 
survey or available antenatal care clinic (ANC) data. In order to ensure that our estimates of incidence and 
prevalence in these places were consistent with our estimates of HIV progression, we used a version of 
EPP written in R and C++ by Jeffrey Eaton to create new fits to the available prevalence data. The version 
of EPP used in GBD 2017 was updated in 2017 by Jeffrey Eaton. In this new version, an ANC prevalence 
adjustment was included and incorporated with the 2016 lookup database for the relative risk between 
pregnant women and the whole adult population and an additional parameter to estimate ANC variance 
inflation was included as well.  
 
For adjusting ANC data to align with the national 15 to 49 both sexes population, we extracted data on 
HIV prevalence among pregnant women who gave birth within the last year and attended an ANC clinic 
from available DHS surveys. A simple model with regional random effects was run to generate location-
specific prior distributions for the ANC bias adjustment where surveys were available, and regional priors 
for locations without a survey. The adjustment using a time-series of relative risk between pregnant 
women and the adult population was removed, and the ANC bias parameter was changed to account for 
all of the biases observed between these two populations.   
 
In the new version of EPP, in addition to the equilibrium prior assumption of the force of infection in 
projection, a random walk approach is available as an alternative method. For locations with two or more 
prevalence surveys and a declining trend between the mean of the most recent two surveys, the random 
walk approach was chosen to project the force of infection. We assumed the change of the log scaled 
force of infection was following a normal distribution with mean equal to the median of the change of the 
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modeled force of infection among the years having ART implemented or prevalence data, and the SD was 
equal to the default setting as the mean SD of the change of the modeled force of infections among the 
years having prevalence data. The projection year was chosen from the most recent year between the 
year with the lowest model force of infection and the year of the second latest survey data. 
 
In the new EPP code, an optimization step was added into IMIS function to speed up the parameter 
sampling step based on Raftery and Bao.10 Two optimization methods have been introduced. The main 
algorithm is Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization. If BFGS fails, Nelder-Mead 
optimum is used instead. In our 2016 EPP model, by substituting in our own assumptions about HIV 
progression rates and on/off ART mortality, we were able to ensure that the implied relationship between 
incidence and mortality/prevalence in EPP is similar to that in Spectrum. 
 
To incorporate uncertainty in our mortality and progression parameters, we run EPP with separate draws 
of each of these parameters. This process produced 1,000 sets of EPP output for each of the locations 
that make up the 48 countries in the group. Every set of EPP outputs contains 500 consistent draws of 
HIV incidence and prevalence in adults aged 15-49. 
 
For every location in the group, we sampled one of the 500 incidence/prevalence draws from each of the 
sets of EPP results. By sampling one draw from each set, we ensured that the distribution of progression 
parameters dictating the relationship between incidence and prevalence was exactly the same as the 
distribution of the sorted parameters generated in the previous step.  At the end of this process, for every 
location in the set of 48 countries, we were left with 1,000 linked draws of adult incidence and prevalence 
and the exact mortality and progression parameters that generated those draws. We then ran these 
results, along with the previously described demographic and HIV-specific inputs, through Spectrum to 
produce location-, year-, age-, and sex-specific estimates of HIV incidence, prevalence, and mortality. 
 
The HIV/mortality reckoning process is intended as a method of reconciling separate estimates of HIV 
mortality (and its resulting effect on estimates of HIV-free and all-cause mortality) in Group 1 countries by 
averaging estimates of HIV mortality from the model life table process and EPP-Spectrum. Additional 
details on the reckoning can be found in the GBD 2017 mortality manuscript.11   
 
Since Spectrum produces HIV incidence, prevalence, and deaths that are consistent with one another 
over time, the reckoning process results in death numbers that are no longer consistent with the 
incidence and prevalence produced in Spectrum. In order to recreate this consistency, we recalculated 
incidence for all Group 1 locations using reckoned deaths and prevalence produced by Spectrum. The 
updated incidence is calculated by aggregating counts of new infections, HIV deaths from Spectrum, and 
HIV deaths after reckoning at the year-sex level. The difference between reckoned HIV deaths and HIV 
deaths from Spectrum is added to Spectrum incidence, and we calculate the ratio between updated 
incidence and Spectrum incidence. Age-specific counts of new infections are then scaled by their 
corresponding sex-year ratios. 
 
Countries with vital registration data (Group 2A and 2B)     
Vital registration is one of the highest-quality sources of data on HIV burden in many countries, so 
generating estimates that are consistent with these data with necessary adjustment to account for any 
potential underreporting is critical. We identified 108 countries – as well as 574 subnational locations 
from Brazil, China, Japan, Indonesia, India, Mexico, Sweden, the United Kingdom, Ukraine, Russia, New 
Zealand, Iran, Norway and the United States – with usable points of vital registration data, verbal autopsy 
(VA) data, or sample registration system (SRS) data. In India, Vietnam and Indonesia, we used SRS and VA 
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data, respectively, as input mortality for CIBA. For India we extracted the resulting age-sex distribution of 
incidence, but scaled the level to match the adult incidence rate estimated from EPP for each state. 
 
We imputed missing years of data to generate a complete time series for HIV from the estimated start 
year of the epidemic using ST-GPR. We analyzed mortality trends using ST-GPR starting in 1981, the year 
that HIV was first identified in the United States.12 For ST-GPR, we adjusted the lambda (time weight) and 
GPR scale according to the completeness of vital registration data, with 4- and 5-star quality VR using 
parameters designed to follow the data more closely. We produced separate splines by country/age 
group, up to the peak year of death rate. We then ran a linear regression with fixed effects on region, 
age, and sex. Following this, we ran space-time residual smoothing, in which time, age, and space weights 
are used to inform smoothing of the residuals between data points and the linear regression estimate. 
From this process, we generated space-time estimates with the applied weights, along with the median 
absolute deviation (MAD) of the space-time estimates from the data. The MAD was calculated at various 
levels of the geographic hierarchy (e.g., subnational and national), and was added into the data variance 
term. The data variance and space-time estimates were then analyzed using Gaussian Process Regression 
to return a final estimate of mortality along with uncertainty. 
 
Although Spectrum produces HIV mortality estimates that are within the realm of possibility in most 
countries using the incidence curves provided in the UNAIDS country files, it is a deterministic model that 
has not yet been integrated into an optimizable framework. Therefore, in order to “fit” it to vital 
registration data, we need to adjust input incidence. 
 
To improve the fit of this process, in GBD 2015, we restructured Spectrum to track cohorts by year of HIV 
infection. With this version of Spectrum we can output, among many other metrics, HIV deaths by year, 
age, sex, and infection cohort. This enables us to adjust incidence to fit to death much more precisely and 
without making any rigid assumptions about the time from HIV infection to HIV death. 
 
We have incorporated these improvements into a cohort incidence bias adjustment (CIBA) process. First, 
we ran Spectrum normally to produce 1,000 draws of incidence, prevalence and mortality. Then, by year, 
age, and sex, we took the ratio of VR deaths to Spectrum deaths to quantify the amount of bias in 
Spectrum. Using draw-level duration data from the new version of Spectrum, for every year-, age-, and 
sex-specific infection cohort, we calculated the share of all HIV deaths observed over the course of the 
projection period in that cohort that would occur in each year after the year of infection. For example, 
projecting from 1970 through 2016, we identified the cohort of men infected in 1992 at the age of 16, 
calculated the total number of HIV deaths in that cohort in all subsequent years through the end of 2016, 
and divided the annual number of deaths by that total. This showed us the distribution of deaths among 
that cohort over the projection period. In the most extreme case (infections in 2015), we could only 
produce one point of that distribution (2016), so that single value is exactly 1·0; 100% of the deaths 
observed in that cohort occurred in 2016. 
 
We then used these distributions of death to weigh the ratio of VR deaths to Spectrum deaths, meaning 
that ratios in the years where we expect the largest share of deaths were weighed most heavily. We then 
multiplied the initial size of that cohort from the normal run of Spectrum by the sum of the combined 
ratios to get a new estimate of new cases in that year/age/sex combination. 
 
We can write this method mathematically in the following way: 

𝑟𝑟𝑡𝑡 =
𝑉𝑉𝑅𝑅𝑡𝑡
𝐷𝐷𝑡𝑡
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𝜌𝜌𝑡𝑡𝑡𝑡−𝑖𝑖 =
𝑑𝑑𝑡𝑡𝑡𝑡−𝑖𝑖

∑ 𝑑𝑑𝑘𝑘𝑡𝑡−𝑖𝑖𝑛𝑛
𝑘𝑘=𝑡𝑡−𝑖𝑖+1

 

𝛼𝛼𝑡𝑡−𝑖𝑖 = � 𝑟𝑟𝑘𝑘

𝑛𝑛

𝑘𝑘=𝑡𝑡−𝑖𝑖+1

∗ 𝜌𝜌𝑘𝑘𝑡𝑡−𝑖𝑖 

𝑛𝑛adjusted𝑡𝑡−𝑖𝑖 = 𝛼𝛼𝑡𝑡−𝑖𝑖 ∗ 𝑛𝑛𝑡𝑡−𝑖𝑖 
 
𝑉𝑉𝑅𝑅𝑡𝑡 is the number of HIV/AIDS deaths in year 𝑡𝑡 from ST-GPR, and 𝐷𝐷𝑡𝑡 is the number of HIV/AIDS deaths 
from the first run of Spectrum. In the second equation, 𝑑𝑑𝑡𝑡

𝑡𝑡−𝑖𝑖 is the number of HIV/AIDS deaths among 
members of infection cohort 𝑡𝑡 − 𝑖𝑖 in year 𝑡𝑡, with 𝑖𝑖 ≥ 1, from the new, duration-tracking version of 
Spectrum, and 𝑛𝑛 is final year of the projection. Therefore, 𝜌𝜌𝑡𝑡

𝑡𝑡−𝑖𝑖 is the share of observed deaths in cohort 

𝑡𝑡 − 𝑖𝑖 that we expect to occur in year 𝑡𝑡. It follows that 𝛼𝛼𝑡𝑡−𝑖𝑖 is the weighted adjustment ratio described 
above, which we multiply by the estimated initial size of infection cohort 𝑡𝑡 − 𝑖𝑖 as calculated in the first-
stage Spectrum run to get the adjusted number of new cases, 𝑛𝑛adjusted

𝑡𝑡−𝑖𝑖 . This process is run separately for 
every sex, single-age, and draw. 
 
CIBA allows ratios in each year after a given infection year to influence the final adjustment to incidence. 
The size of that influence is determined by the relative importance of that year in the cohort-year’s 
distribution of deaths over time. The result is a new set of 1,000 draws of incidence and a set of 1,000 
ratios of post-adjustment incidence to pre-adjustment incidence. We perform this adjustment using 
mean durations from the new version of Spectrum in order to try to shift the mean of the regular 
distribution of deaths. 
 
Finally, to produce location-, year-, age-, and sex-specific estimates of HIV incidence, prevalence, and 
mortality, we ran the new estimates of incidence and all previously input data through Spectrum. 
 
Countries without survey data and vital registration data (Group 2C) 
The remaining 30 countries – as well as Macao Special Administrative Region of China – had neither 
geographically representative seroprevalence surveys nor reliable vital registration systems. To produce 
estimates of HIV burden in these countries, we assumed that Spectrum is similarly biased as in other 
Group 2 countries within the same super-region. This involved running Spectrum, adjusting incidence 
using 1,000 adjustment ratios randomly sampled from CIBA results from the same super-region, and 
rerunning Spectrum using the new draws of adjusted incidence. As above, the estimates of incidence, 
prevalence, and mortality were incorporated into the rest of the machinery via the reckoning process. 

HIV/AIDS resulting in other diseases 
There are two Level 4 causes under the HIV/AIDS Level 3 cause in the GBD 2015 cause hierarchy. 

The modeling process for HIV/AIDS-tuberculosis is detailed in a separate part of this appendix. We 
computed deaths for HIV resulting in other diseases by subtracting HIV/AIDS-tuberculosis deaths from all 
HIV deaths at the 1,000 draw level. 
 
 
Source Counts 

HIV on/off treatment Other 
Site-years (total) 17045 
Number of countries with data 148 
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Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 

HIV Prevalence Other 
Site-years (total) 2037 

Number of countries with data 51 

Number of GBD regions with data (out of 21 regions) 9 

Number of GBD super-regions with data (out of 7 super-regions) 5 

 

HIV Incidence case reports Other 
Site-years (total) 666 
Number of countries with data 54 
Number of GBD regions with data (out of 21 regions) 7 
Number of GBD super-regions with data (out of 7 super-regions) 3 
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Input Data & Methodological Summary 
Indicator definition 
This modeling strategy encompassed the indicator associated with tuberculosis incidence (3.3.2). 

Indicator 3.3.2 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.3, by 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and 
combat hepatitis, water-borne diseases and other communicable diseases, is measured using SDG 
Indicator 3.3.2, number of new and relapsed TB cases per 100,000. 

 
Case Definition  
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. The case definition 
includes all forms of TB including pulmonary TB and extrapulmonary TB which are bacteriologically 
confirmed or clinically diagnosed. For TB, the ICD 10 codes are A10-A19.9, B90-B90.9, K67.3, K93.0, 
M49.0, P37.0, and ICD 9 codes are 010-019.9, 137-137.9, 138.0, 138.9, 139.9, 320.4, 730.4-730.6. For 
HIV-TB, the ICD 10 code is B20.0. 

Latent TB infection is defined as an infection with Mycobacterium tuberculosis, without any symptoms or 
signs of active TB disease. 

We separately estimated the incidence and prevalence of multidrug-resistant tuberculosis and 
extensively drug-resistant tuberculosis by HIV status. The case definitions are shown below. 

(1) Multidrug-resistant TB without extensive drug resistance: a form of TB (among HIV-negative 
individuals) that is resistant to the two most effective first-line anti-tuberculosis drugs (isoniazid and 
rifampicin), but is not resistant to any fluoroquinolone and any second-line injectable drugs (amikacin, 
kanamycin, or capreomycin). 

(2) Extensively drug-resistant TB: a form of TB (among HIV-negative individuals) that is resistant to 
isoniazid and rifampicin, plus any fluoroquinolone and any second-line injectable drugs. 

(3) Drug-susceptible TB: TB (among HIV-negative individuals) that is susceptible to isoniazid and 
rifampicin 

(4) HIV/AIDS - Multidrug-resistant TB without extensive drug resistance: a form of TB (among HIV-
positive individuals) that is resistant to the two most effective first-line anti-tuberculosis drugs (isoniazid 
and rifampicin), but is not resistant to any fluoroquinolone and any second-line injectable drugs 
(amikacin, kanamycin, or capreomycin). 

(5) HIV/AIDS - Extensively drug-resistant TB: a form of TB (among HIV-positive individuals) that is 
resistant to isoniazid and rifampicin, plus any fluoroquinolone and any second-line injectable drugs  

(6) HIV/AIDS - Drug-susceptible TB: TB (among HIV-positive individuals) that is susceptible to 
isoniazid and rifampicin 
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Input data 
Model Inputs 
Input data for TB include annual case notifications, data from prevalence surveys, and estimated cause-
specific mortality rates (CSMR) of TB among HIV-positive and HIV-negative individuals. From these inputs, 
we calculated ‘priors’ (expected values) on excess mortality to give more guidance to the model. Input 
data for latent TB infection (LTBI) include: (1) population-based tuberculin surveys, and (2) cohort studies 
examining the risk of developing active TB disease as a function of induration size. An updated systematic 
review was done for GBD 2017. The search terms, number of studies identified, and number of studies 
included are shown in the table below.  

 

Outcome Search Terms Total 
number of 
studies 
identified  

Number 
of studies 
included 

Tuberculosis Pubmed: ("tuberculosis"[MeSH] OR 
tuberculosis[Title/Abstract]) OR TB[Title/Abstract] OR 
Mycobacterium tuberculosis[Title/Abstract] AND 
prevalence[Title/Abstract] AND ("2016/08/01"[PDAT] : 
"2017/09/15[PDAT]) NOT (animals[MESH] NOT 
humans[MESH]) 

732 13 

LTBI (tuberculin 
surveys) 

Pubmed: ("tuberculin survey"[tiab] OR (("risk"[MeSH 
Terms] OR "risk"[tiab] OR "risk of"[tiab]) AND 
("tuberculosis"[MeSH Terms] OR "tuberculosis"[tiab] OR 
"tuberculous"[tiab]) AND ("infection"[MeSH Terms] OR 
"infection"[tiab])) OR (("risk"[MeSH Terms] OR "risk"[tiab] 
OR "risk of"[tiab]) AND TB[tiab] AND ("infection"[MeSH 
Terms] OR "infection"[tiab])) OR "latent tuberculosis 
infection"[tiab] OR "latent TB infection"[tiab] OR "latent 
tuberculosis"[MESH]) AND ("survey"[tiab] OR 
"surveys"[tiab]) NOT (animals[MESH] NOT humans[MESH]) 
("2016/08/01"[PDAT] : "2017/09/07"[PDAT]) 
 
Google Scholar: ("tuberculin survey" OR "risk of 
tuberculous infection" OR "risk of tuberculosis infection" 
OR "risk of TB infection" OR "latent tuberculosis infection" 
OR "latent TB infection") AND "survey". (01-01-2016 to 09-
08-2017). 

54; 
1326 

3; 
5 

LTBI (cohort 
studies) 

Pubmed: ("tuberculin"[tiab] OR ("tuberculin"[tiab] AND 
"positive"[tiab]) OR "Mantoux"[tiab] OR ("Mantoux"[tiab] 
AND "positive"[tiab]) OR "induration"[tiab]) AND 
(active[tiab] AND ("tuberculosis"[MeSH] OR 
"tuberculosis"[tiab])) AND ("risk"[MeSH] OR "risk"[tiab]) 
AND ("prospective"[tiab] OR "follow up"[tiab] OR 
"longitudinal"[tiab]) NOT (animals[MESH] NOT 

20 0 
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humans[MESH]) ("2016/08/01"[PDAT] : 
"2017/09/21"[PDAT]) 

 

Input data for multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) include: (i) the 
number of MDR-TB cases, XDR-TB cases, new and retreated TB cases with a drug sensitivity testing (DST) 
result for isoniazid and rifampicin, and MDR-TB cases with DST for second-line drugs from routine 
surveillance and surveys reported to the World Health Organization, and (ii) the risk of MDR-TB 
associated with HIV infection from the literature.1   

 

Modelling Strategy 
 

Overview  
Our TB Modelling strategy has not changed substantially from GBD 2016, but we made a refinement in 
the MI ratio regression approach: we used the Health Care Access and Quality index (HAQI) instead of 
using SDI in the MI ratio regression (as HAQI is a better health-related index than SDI for TB). First, we 
estimated risk-weighted prevalence of LTBI by location, year, age and sex using data from population-
based tuberculin surveys and cohort studies reporting the risk of developing active TB disease as a 
function of induration size. Next, we divided the inputs on prevalence (from surveys in low and middle 
income countries), incidence (notification data from countries with a four or five-star rating, and 
estimated incidence for countries with a less than four-star rating), and cause specific mortality rate 
(CSMR) by the risk-weighted LTBI prevalence in order to model TB among those at risk in each country. 
We first ran a mixed effects regression (with region random effects) using MI ratios (logit transformed) 
from locations with a 4 or 5-star rating on causes of death with HAQI as a covariate anchoring the lower 
end of the HAQI scale with a data point from the Bangalore study2 reporting that 49.2% of 126 untreated 
new pulmonary TB cases were dead at the end of the 5-year follow up period, to predict age-sex specific 
MI ratios for all locations and years. We then estimated age-sex specific incidence using the predicted MI 
ratios and CSMR estimates. We used DisMod-MR 2.1, the GBD Bayesian meta-regression tool to generate 
consistent trends in all parameters. We then multiplied the DisMod-MR 2.1 outputs by the risk-weighted 
prevalence of LTBI to get population-level estimates of incidence and prevalence. Because the output 
from DisMod-MR 2.1 are for all forms of TB, we split them into MDR-TB and XDR-TB by HIV status. To do 
so, we estimated the proportions of TB cases with MDR-TB for all locations and years, using data from 
notifications and survey data. We then estimated the proportions of MDR-TB among HIV-negative 
individuals and MDR-TB among HIV-positive individuals based on the risk of MDR-TB associated with HIV 
infection from a meta-analysis1. To split MDR-TB into MDR-TB with and without extensive drug resistance, 
we pooled the limited notification and survey data on the proportion of MDR-TB cases with extensive 
drug resistance by super-region, and applied these proportions to MDR-TB cases among HIV-negative and 
HIV-positive individuals respectively. 

 
Modelling risk-weighted latent TB infection prevalence 
Input data for Modelling risk-weighted LTBI prevalence were from two sources: (i) population based 
tuberculin skin test (TST) surveys, and (ii) cohort studies examining the risk of developing active TB 
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disease as a function of induration size. First, we extracted the prevalence of tuberculin skin testing 
results by induration size using the most detailed induration categories reported by studies. Second, from 
cohort studies reporting on the relative risk of developing active TB disease as a function of induration 
size, we pooled the risk of developing active TB by induration size in millimeters using the DisMod Ode 
computational engine. Third, we multiplied the LTBI prevalence by induration in millimeters ranging from 
0-20+ with the relative risk of developing active TB at each induration size, and summed them up to 
derive risk-weighted LTBI prevalence for each age group.  

Available evidence3 suggests that people with very advanced HIV infection (CD4 counts <200 cells/mm3) 
may have a false-negative TST (0mm induration) due to profound immune suppression, but still have very 
high risk for TB. For those who are HIV-positive, but with higher CD4 counts, the risk for active TB 
increases with greater induration size as in HIV-negative individuals (i.e., the shape of the tuberculin 
response curve is similar to that for the general population). To take into account the false-negative TST 
response in HIV cases with profound immune suppression, we first computed the proportion of HIV-
positive individuals with CD4 counts <200 cells/mm  for the 0mm induration group using our HIV 
prevalence estimates for that particular category. We then multiplied that proportion by the relative risk 
of developing active TB disease in the 0mm induration group compared with the 20+ mm induration 
group among HIV positive individuals. The relative risk was computed using data from a prospective, 
multicenter cohort study of HIV-positive people in the United States.3  

Using the risk-weighted LTBI prevalence (adjusting for a false-negative TST among people with advanced 
HIV infection) as input data, we ran a DisMod MR 2.1 model with the HAQI covariate to help inform 
variation over year and geography, with priors that at higher HAQI values, LTBI prevalence decreases. We 
included two study covariates (BCG positive, and mixed BCG status) where the reference category is BCG 
negative. We found no statistically significant difference between studies using different dosages of 
tuberculin purified protein derivative (PPD). We therefore did not include different PPD dosages as study 
covariates but added more uncertainty to data points from studies that used dosages larger or smaller 
than the standard dose of 5 tuberculin units per test dose of 0.1 ml, by entering them as z-covariates in 
DisMod. 

 
Modelling TB incidence  
Incidence inputs were from two different sources: (1) incidence from notification data for countries with 
a four or five-star rating on their cause of death data4 as a proxy for the quality of health-related 
administrative data systems, and (2) estimated incidence for countries with a less than four-star rating. 
We used the age and sex-specific notifications (all new and relapse cases combined) in our analysis. Prior 
to 2013, notification data were available by case type (new pulmonary smear-positive, new pulmonary 
smear-negative, and new extra-pulmonary) and there were missing age data especially for younger age-
groups in some countries. We imputed the missing age-groups for the three forms of TB notifications. 
Smear-positive age-specific notifications were inflated with the proportion smear-unknown and relapsed 
cases only reported at the country-year level.  Some countries reported only pulmonary smear-positive 
cases for selected years. Missing smear-negative and extra-pulmonary cases were predicted from the 
adjusted smear-positive cases using a seemingly unrelated regression.  All three types of notifications 
were added together to represent TB-all form incidence for countries with a four or five-star rating.  
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To generate incidence estimates for locations with a less than four-star rating, we ran a mixed effects 
regression (with region random effects), using MI ratios (logit transformed) from locations with a 4 or 5-
star rating on causes of death as input data with HAQI as a covariate anchoring the lower end of the HAQI 
scale with a data point from a cohort study in the 1960s2 reporting that 49.2% of 126 untreated new 
pulmonary TB cases were dead at the end of the 5-year follow up period, in order to predict age-sex 
specific MI ratios for all locations and years. We then used the MI ratios and cause specific mortality 
estimates to compute the incidence input for DisMod-MR 2.1 for locations with a less than four-star 
rating. In locations where estimated MI ratios were greater than notification-based MI ratios, we used the 
latter to compute the incidence input. Notification-based MI ratios were computed using notification data 
and estimated CSMR for 2010. For other years, we assumed a similar proportional difference between 
predicted MI ratios and notifications-based MI ratios as in 2010 and adjusted the predicted MI ratios 
accordingly, which were then used to compute the incidence input. We computed the age-sex specific 
incidence of TB among the latent TB-infected population, using TB incidence as the numerator and our 
estimated risk-weighted latent TB infection prevalence as the denominator.  

 
Modelling TB prevalence 
Data from prevalence surveys reporting on pulmonary smear-positive TB and bacteriologically positive TB 
were included. Because incidence data are for all forms of TB, we adjusted prevalence surveys to account 
for extra-pulmonary cases. We ran a spatiotemporal Gaussian process regression to predict location-year-
age-sex specific proportions of extra-pulmonary TB among all TB cases using data on the three forms of 
TB from the incidence data above. We then computed the extra-pulmonary inflation factor as 1+( 
proportion of extrapulmonary TB /(1- proportion of extrapulmonary TB)), and applied it to data from 
prevalence surveys. We then computed the prevalence of TB among the TB-infected population, using TB 
prevalence as the numerator and our estimated risk-weighted LTBI prevalence as the denominator. We 
included a study covariate indicating whether it was bacteriologically positive TB (reference category) or 
smear-positive TB. We found no systematic bias between studies that used both symptoms and chest X-
ray as screening methods and studies that used only one of the methods. We therefore did not adjust 
them for systematic bias but added more uncertainty to data points from studies that used only one of 
the screening methods (by using it as a z-covariate in DisMod). We also added more uncertainty to data 
points from sub-national surveys. We included two location-level covariates, namely, age-standardized 
adult underweight prevalence and log-transformed age-standardized Summary Exposure Variable (SEV) 
scalar for TB (a summary variable of the exposure levels of TB risk factors weighted by relative risk) to 
help inform variation of TB prevalence over year and geography. 

 
Modelling TB excess mortality  
We matched each prevalence data point and TB CSMR (TB and HIV-TB combined) by location, year, age, 
and sex to calculate excess mortality rate (EMR) as EMR=CSMR/prevalence. We also matched each 
incidence data point and TB CSMR by location, year, age, and sex to calculate EMR for countries with a 
four or five-star rating on their cause of death data. To reflect a gradient in EMR, we added the HAQI and 
adult HIV death rates as country-level covariates. 
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DisMod-MR 2.1 
For each location, we included the following as input in the DisMod model: case notifications for locations 
with a four or five-star rating, predicted MI-ratio-based incidence for locations with a less than four-star 
rating, prevalence survey data where available, excess mortality estimates, and CSMR (TB and HIV-TB 
combined) by age and sex.  

The output from the DisMod model was for all forms of TB in TB-infected population including both HIV-
negative and HIV-positive individuals. We computed the incidence and prevalence of TB among the entire 
population, by multiplying the prevalence of LTBI with the DisMod model estimates. 

Betas and exponentiated values from the DisMod model are shown in the table below. 

Covariate Parameter Beta (95% CI) Exponentiated beta (95% 
CI) 

Smear positive TB Prevalence -0.75  0.47 (0.47 — 0.47) 
Sex (male) Prevalence 0.17 1.18 (1.10 — 1.27) 
Sex (male) Incidence 0.32 1.38 (1.38 — 1.38) 
Age-standardized 
proportion adult 
underweight 

Prevalence 2.65 14.16 (8.81 — 19.47) 

Age-standardized SEV 
scalar (log-
transformed) 

Prevalence 0.76  2.13 (2.12 — 2.17) 

HAQI (log-
transformed) 

Excess mortality -1.50 0.22 (0.21 — 0.23) 

Adult HIV death rate Excess mortality 0.64 1.89 (1.03 — 6.23) 
 

HIV-TB incidence and prevalence  
To distinguish HIV-TB from all forms of TB, we first estimated the proportions of HIV-TB cases among all 
TB cases using data on the number of TB cases recorded as HIV-positive and the number of TB cases with 
an HIV test result recorded in the WHO TB notifications register. We ran a mixed effects regression using 
the adult HIV death rate as a covariate to predict location-year specific HIV-TB proportions, which were 
then applied to TB incident and prevalent cases from DisMod, to generate HIV-TB incident and prevalent 
cases by location and year. These cases were then age-sex split based on the age-sex pattern of estimated 
HIV prevalence by location-year to generate location-year-age-sex specific HIV-TB incident and prevalent 
cases.  

 

Multidrug-resistant TB, extensively drug-resistant TB and drug-susceptible TB  
We ran spatiotemporal Gaussian process regressions to predict the proportions of new TB cases with 
MDR-TB, proportions of retreated TB cases with MDR-TB, and proportions of retreated cases among all 
TB cases for all locations and years. We calculated the proportions of new TB cases among all TB cases as 
1- estimated proportions of retreated cases. Next, we computed the weighted average of the proportions 
of new and retreated cases with MDR-TB at the 1000 draw level. We then used the weighted average 
proportions of MDR-TB, along with the HIV-TB and TB no-HIV incidence estimates, and the relative risk of 
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MDR-TB associated with HIV infection from the literature1 to compute the proportions of MDR-TB cases 
among HIV negative TB cases �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠� by location, year, age, and sex using the following formula: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑦𝑦

�1 + �𝑅𝑅𝑅𝑅
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠

��  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠

 

 
where 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑦𝑦 is the number of all MDR-TB cases among HIV-positive and HIV-negative individuals by 
location and year, RR is the relative risk of MDR-TB associated with HIV infection, 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 is the 
number of HIV-TB incident cases by location, year, age, and sex, and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 is the number of TB 
no-HIV incident cases by location, year, age, and sex. 
 
We then applied the predicted proportions of MDR-TB cases among HIV negative TB cases to our 
predicted HIV-negative TB incident and prevalent cases to generate MDR-TB incident and prevalent cases 
by location, year, age, and sex. Next, we subtracted MDR-TB cases from all HIV-negative TB cases to 
generate drug-susceptible TB cases by location, year, age, and sex. To distinguish XDR-TB from MDR-TB, 
we aggregated the XDR-TB cases and MDR-TB cases (with drug sensitivity testing for second-line drugs) 
up to the super-region level and calculated the super-region level proportions of XDR-TB among MDR-TB 
cases, which were then applied to MDR-TB cases in corresponding countries within the super-regions to 
produce XDR-TB cases by location, year, age, and sex. We linearly extrapolated XDR-TB prevalence and 
incidence back assuming the rates were zero in 1992, one year before 1993 when XDR-TB was first 
recorded in USA surveillance data.5 Finally, we subtracted XDR-TB cases from MDR-TB cases to generate 
MDR-TB (without XDR) cases by location, year, age, and sex.   
 
HIV/AIDS - Multidrug-resistant TB, HIV/AIDS - extensively drug-resistant TB, and HIV/AIDS - drug-
susceptible TB  
To split HIV-TB into HIV-MDR-TB and HIV-drug-susceptible-TB, we first calculated the proportions of HIV-
MDR-TB among all HIV-TB cases (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠) for each location, year, age, and sex using the following 
formula: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠𝑅𝑅𝑅𝑅 
 
where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 is the proportions of MDR-TB among all HIV-negative TB cases for each location, 
year, age, and sex and 𝑅𝑅𝑅𝑅 is the relative risk of MDR-TB associated with HIV infection. We then applied 
the predicted proportions of MDR-TB cases among HIV-TB cases to our estimated HIV-TB incident and 
prevalent cases to generate HIV-MDR-TB incident and prevalent cases by location, year, age, and sex. 
Next, we subtracted HIV-MDR-TB cases from all HIV-TB cases to generate HIV-drug-susceptible-TB cases 
by location, year, age, and sex. To separate out HIV-XDR-TB from HIV-MDR-TB, we applied the super-
region level proportions of XDR-TB among MDR-TB cases, to HIV-MDR-TB cases in corresponding 
countries within the super-regions to produce HIV-XDR-TB cases by location, year, age, and sex. We 
linearly extrapolated HIV-XDR-TB prevalence and incidence back assuming the rates were zero in 1992, 
one year before 1993 when XDR-TB was first recorded in USA surveillance data.5 Finally, we subtracted 
HIV-XDR-TB cases from HIV-MDR-TB cases to generate HIV-MDR-TB (without extensive drug resistance) 
cases by location, year, age, and sex.   
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New MDR-TB and XDR-TB cases among retreated cases by HIV status 
Because we split TB incidence (new and relapse cases combined) by drug-resistance type, the above 
estimation did not capture new MDR-TB and XDR-TB cases arising from retreated TB cases other than 
relapse cases. We therefore separately estimated new MDR-TB and XDR-TB cases arising from retreated 
TB cases and added them to the incident cases estimated above. To do so, we first ran a spatiotemporal 
Gaussian process regression using notification data and HAQI as a covariate to predict the proportion of 
retreated cases (excluding relapse cases) among all TB patients for all locations and years. Next, we 
computed retreated cases as (retreated proportion*estimated incident cases)/(1-retreated proportion). 
We then computed the total number of TB cases by summing estimated incident cases and retreated 
cases. Similar to our estimation for MDR-TB and XDR-TB among TB incident cases by HIV status, we 
estimated MDR-TB and XDR-TB cases among all TB cases (incident cases and retreated cases combined) 
by HIV- status. Finally, the number of retreated cases with MDR-TB was computed by subtracting MDR-TB 
among TB incident cases from MDR-TB among all TB cases (incident cases and retreated cases combined), 
separately for HIV positive and HIV negative individuals. Similarly, the number of retreated cases with 
XDR-TB was computed by subtracting XDR-TB among TB incident cases from XDR-TB among all TB cases, 
separately for HIV positive and HIV negative individuals. All computations were done at the 1000 draw 
level. 

 

Disability weights 
The lay descriptions and disability weights for severity levels derived from the GBD Disability Weights 
study are shown below. 

Health state Name Lay description Disability Weights 
(95% CI) 

Tuberculosis, not 
HIV infected 

has a persistent cough and fever, is short of breath, 
feels weak, and has lost a lot of weight 

0.333 (0.224-0.454) 

Tuberculosis, HIV 
infected 

has a persistent cough and fever, shortness of 
breath, night sweats, weakness and fatigue and 
severe weight loss 

0.408 (0.274-0.549) 

 

For drug-susceptible TB, MDR-TB without extensive drug resistance, and XDR-TB, we used the same 
disability weight [0.333 (0.224-0.454)] as in non-HIV-infected TB. For HIV-drug-susceptible-TB, HIV-MDR-
TB without extensive drug resistance, and HIV-XDR-TB, we used the same disability weight [0.408 (0.274-
0.549))] as in HIV-infected TB. 
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Source Counts 
All forms Tuberculosis Incidence Prevalence 
Site-years (total) 1751 166 
Number of countries with data 76 28 
Number of GBD regions with data (out of 21 regions) 15 10 
Number of GBD super-regions with data (out of 7 super-regions) 5 7 

 

Latent Tuberculosis Prevalence 
Site-years (total) 228 
Number of countries with data 48 
Number of GBD regions with data (out of 21 regions) 15 
Number of GBD super-regions with data (out of 7 super-regions) 7 
Proportion of HIV-TB among all TB cases Other 
Site-years (total) 1533 
Number of countries with data 167 
Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 

MDR-TB and MDR-HIV-TB Proportions Proportion 
Site-years (total) 853 
Number of countries with data 139 
Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 

XDR-TB and XDR-HIV-TB Proportions Other 
Site-years (total) 85 
Number of countries with data 84 
Number of GBD regions with data (out of 21 regions) 19 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 

Risk of MDR-TB associated with HIV infection Other 
Site-years (total) 1 
Number of countries with data 0 
Number of GBD regions with data (out of 21 regions) 0 
Number of GBD super-regions with data (out of 7 super-regions) 0 

 

Latent Tuberculosis Relative Risk Other 
Site-years (total) 27 
Number of countries with data 21 
Number of GBD regions with data (out of 21 regions) 11 
Number of GBD super-regions with data (out of 7 super-regions) 6 
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3.3.3 Malaria SDG Capstone Appendix 
 
Flowchart 
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Input Data & Methodological Summary 

Indicator definition 

This modeling strategy encompassed the indicator associated with malaria incidence (3.3.3). 

Indicator 3.3.3 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.3, by 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and 
combat hepatitis, water-borne diseases and other communicable diseases, is measured using SDG 
Indicator 3.3.3, malaria cases per 1,000. 

 
Case definition 
Malaria is an acute parasitic mosquito-borne disease. An individual with uncomplicated malaria 
experiences one to two weeks of persistent fever, chills/shivering, sweating, joint pains, and headache.  
The individual will likely be lethargic and feverish, causing loss of daily function during the attack. 
Individuals with an untreated P. falciparum infection may develop severe malaria, which includes the 
symptoms of uncomplicated malaria but may also involve swelling, difficulty breathing, unconsciousness, 
and death. Microscopy is considered the gold-standard diagnostic approach for the purposes of GBD. The 
relevant ICD-10 codes are B50-B54. 

 
Data input 
Primary data inputs were: 

(i) Routine malaria case reports from national routine surveillance systems. These were 
obtained at the national level from the WHO World Malaria Report and at the subnational 
administrative level, wherever possible, via an exhaustive search of published and grey 
literature sources along with online data portals hosted by national ministries of health. Each 
retained record consisted of an annual count of malaria cases along with a distinction 
between confirmed and unconfirmed diagnoses, and differentiation by malaria parasite 
species. 

(ii) Cross-sectional, geolocated, and community-representative observations of infection 
prevalence for Plasmodium falciparum (referred to hereafter as P. falciparum parasite rate, 
PfPR). 

 

These malaria epidemiological metrics were augmented in the modelling by: 

(iii) Malaria Atlas Project (MAP) modelled estimates of malaria control intervention population 
coverage (ITNs, IRS, and effective treatment with an antimalarial drug) resolved to 5 km x 5 
km pixel-year level (for sub-Saharan Africa) and country-year level (outside sub-Saharan 
Africa). 

(iv) A large suite of environmental, sociodemographic, and economic covariates resolved to 5 km 
x 5 km pixel-year level (for sub-Saharan Africa) and country-year level (outside sub-Saharan 
Africa). 
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Modelling strategy 
The suitability, availability, and quality of PfPR and routine case reporting data, as well as detailed 
intervention coverage information, differ markedly inside versus outside sub-Saharan Africa. As such, we 
developed separate modelling strategies for countries inside sub-Saharan Africa versus those outside. The 
exceptions were Algeria, Egypt, Morocco, Comoros, Mauritius, Cape Verde, Sao Tome and Principe, 
Rwanda, Botswana, Namibia, Eritrea, Djibouti, and South Africa. Despite being part of Africa, these 
countries exhibit epidemiological trends and have data availability/quality more akin to non-African 
settings. 

PfPR and case incidence modelling: Africa 
Modelling was conducted in the following steps: 

(i) The large assembly of geolocated PfPR surveys maintained by MAP was used in a Bayesian 
spatiotemporal geostatistical model to predict PfPR for every pixel-year in sub-Saharan Africa, 
representing an update to earlier work (Bhatt et al Nature, Gething et al NEJM). The model 
took into account (i) PfPR survey participant age ranges and diagnostic type; (ii) coverage of 
ITNs, IRS, and effective antimalarial drug coverage, and how these metrics changed through 
time at each date and prediction location; (iii) environmental conditions at each date and 
prediction location (including density of vegetation, temperature, humidity, rainfall, 
elevation, and proximity to populated areas). The outcome was a predicted space-time 
“cube” of PfPR, standardized to the 2-10 age range, for each year 1980–2017. 

(ii) The PfPR cube was then converted into an equivalent cube of the predicted incidence rate of 
clinical malaria. This conversion was achieved using an established model (Cameron et al 
Nature Communications) and provided estimates stratified first into three broad age bins (0-
5; 5-15; <15) and then into the final 23 GBD 2017 age bins. 

 

PfPR and case incidence modelling: Outside Africa 
Malaria endemic countries outside Africa tend to have less PfPR data than those inside, in part because 
prevalence is generally lower. Thus, PfPR becomes an inefficient way to measure malaria risk. Routine 
surveillance systems outside Africa are generally stronger, meaning that reports of malaria cases from 
health systems are more reliable and provide some insight into the total malaria burden in the 
community. Modelling outside Africa was carried out in the following steps: 

(i) National and subnational case reports were first subject to adjustments to identify and 
minimise bias. Bias in reported case numbers arises from various sources. First, a fraction of 
cases in the community will fail to seek treatment or will attend a private or informal health 
care provider who will not provide a record of that case to the routine surveillance system. 
We adjusted for these factors by modelling the fraction of cases seeking care from different 
provider categories based on data from nationally representative cross-sectional household 
surveys (primarily from the Demographic and Health Survey (DHS) program and the Multiple 
Indicator Cluster Survey program). Another factor for which we must adjust is cases reaching 
formal clinics may not be subject to a confirmatory diagnostic test. We adjusted for this by 
assuming the fraction of unconfirmed cases that were truly malaria would equal the fraction 
of positives among all those tested. A final factor we adjust for is incomplete data as many 
routine surveillance systems fail to capture all case reports, with facilities/regions missing 
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from the national totals in a given year. We adjusted for this based on reporting 
completeness statistics published nationally by WHO. 

(ii) These adjusted routine case reports were georeferenced using digitised administrative 
boundary data using a spatial database of such boundaries collated and maintained by MAP. 

(iii) Each case report was converted to an estimate of clinical incidence rate by dividing it by the 
estimated population in each unit, with the latter quantity derived by combing high-
resolution gridded population data and the aforementioned administrative boundaries. 

(iv) Bayesian time-series models were then applied to the case reports for each country to 
impute incidence rates for years with missing data. The results from this analysis, in 
conjunction with the adjusted case reports, constitute the incidence values delivered for GBD 
2017. 

(v) The incidence rate for each country-year was then converted to an inferred PfPR value using 
the same model described earlier (Cameron et al). This allowed us to utilise these polygon-
level surveillance data and the PfPR point-level data (where present) within the same 
modelling framework.  

(vi) The combined PfPR survey point data and (pseudo) PfPR administrative unit data were then 
used in a Bayesian spatiotemporal geostatistical model to predict PfPR at pixel-year level 
across all countries. As for the Africa model, PfPR was standardised by age and diagnostic 
type and informed by a wide suite of covariates. An additional mechanism was developed to 
allow polygon (ie, administrative unit) and point (ie, survey) data to be used jointly to infer 
the predicted space-time surfaces. 

(vii) The predicted PfPR cube was then adjusted to ensure that, after conversion to pixel-level 
incidence, the incidence counts per country-year would precisely match the incidence results 
from step (iv). The summarised PfPR values (ie, population-weighted and tallied for each 
country-year) from the adjusted PfPR cube constitute the PfPR values delivered for GBD 
2017. 

 

Total malaria cases by country, year, sex 
The pixel-level predictions of clinical incidence rate (both inside and outside Africa) were combined with 
high-resolution gridded population data to estimate total cases per pixel-year. These were then 
aggregated to GBD national/subnational geographies. Inside sub-Saharan Africa, for countries endemic 
for P. vivax and P. falciparum, we calculated the number of cases due to P. vivax by applying the fraction 
of P. vivax and P. falciparum obtained from WHO and a literature review. Outside sub-Saharan Africa we 
followed the identical procedure for P. vivax and P. falciparum. Final age-splitting was accomplished using 
age-versus-incidence rate relationships gleaned from the paper by Cameron and colleagues (2014). 

Determining YLDs for malaria 
As in GBD 2016, we use a two-step process for determining malaria severity. For acute cases, severity 
splits for mild, moderate, and severe malaria were produced by analysis of MEPS data. These sequelae 
and their associated disability weights are presented below. 

Table 1. Severity level, lay description, and DW 

Severity level Lay description DW (95% CI) 
Mild Has a low fever and mild discomfort but no 

difficulty with daily activities. 
0.006 

(0.002–0.012) 
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Moderate Has a fever and aches and feels weak, which causes 
some difficulty with daily activities. 

0.051 
(0.032–0.074) 

Severe Has a high fever and pain and feels very weak, 
which causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

 

To determine long-term neurological burden due to malaria, we use the work by Roca-Felter and 
colleagues (2008) that examined the number of uncomplicated cases that led to longer-term impairment. 
Analytically, this means multiplying incidence estimates (described in the section above for persons under 
20 by 0.00029 (0.000077–0.00057). This adjusted case estimate is then combined with excess mortality 
rates derived from all-cause mortality and standardised mortality ratios for neonatal encephalopathy (NE) 
in a DisMod model to produce prevalence estimates of long-term sequelae for all estimation years. 
Implicit in this process is an assumption that the disability and trend of impairment due to severe malaria 
follow NE. The subsequent severity splitting follows NE as well.  

To determine the burden of acute (short-term) malaria, the incidence estimation results are combined 
and converted to prevalence by matching each draw with a draw of duration of clinical illness. Consistent 
with GBD 2016, we use a uniform distribution between 14 and 28 days for duration. 
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3.3.4 Hepatitis SDG Capstone Appendix 

 
Acute hepatitis A 
Flowchart 

 

Case definition 
We define acute hepatitis A as an infection with the hepatitis A virus resulting in anti-HAV IgG 
seroconversion, regardless of symptoms. It includes all ICD-10 codes under the heading B15 (Acute 
hepatitis A). 

Input data 
Model inputs 

Our case definition is infection with hepatitis A, irrespective of symptomology. We use anti-hepatitis A 
virus (HAV) seroprevalence data from population-based studies and surveys to inform these estimates. 
We present a summary of the data sources in Table 1 below. Updates to systematic reviews are 
performed on an ongoing schedule across all GBD causes; an update for hepatitis A will be performed in 
the next one to two iterations. The last systematic review was performed as part of GBD 2013.   

Table 1: Data inputs for acute hepatitis A morbidity modelling by parameter 

 Prevalence 
Site-years (total) 562 
Number of countries/subnational locations with data 119 
Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 
Severity splits & disability weights 
The table below illustrates the sequelae associated with acute hepatitis A, as well as the lay descriptions 
and associated disability weights. 
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Sequela Description 
Disability 
Weight 

Moderate Has a fever and aches, and feels weak, which causes 
some difficulty with daily activities.  

0.051 
(0.032–0.074) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

Asymptomatic Infection with no apparent illness of NA 

 

We calculate acute symptomatic infections by multiplying incidence of acute infection by the probability 
of acute symptomatic infection. The probability of symptomatic infection comes from Armstrong and Bell 
and is shown in the figure below (where probability of symptomatic infection is represented as 
“probability of jaundice”) [1]. The probability increases with age from ~1% in the first year of life to ~85% 
in adulthood. The probability function is: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 0.852 ∗ (1 −  𝑒𝑒−0.01244 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎1.903)

 

The remainder of acute infections are assumed to be asymptomatic.  

We then base severity splits for moderate and severe on expert opinion that the probability of severe 
infection follows a beta distribution with mean 0.6% (table 2 reports percentiles of this distribution.) We 
assume the rest of symptomatic infections are moderate.  

Table 2. Percentiles of the probability distribution of severe acute hepatitis A 

0 percentile 25 percentile 50 percentile 75 percentile 100 percentile 
0.0024 0.0054 0.006 0.007 0.01 
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Modelling strategy 
We model the seroprevalence of anti-hepatitis A virus IgG using a DisMod-MR 2.1 model of anti-HAV 
seroprevalence. Remission and excess mortality value priors of zero were used, and an incidence value 
prior range between 0 and 0.5 was used. Given its reasonably stable force of infection among susceptible 
people across age groups, we derive incidence from the prevalence estimates using the following 
formula:  
 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
−ln (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

agemid
∗ (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

 
Changes from GBD 2016 to GBD 2017 
This approach is a modification from GBD 2016, where instead of utilising DisMod-MR 2.1, we estimated 
anti-HAV seroprevalence via a catalytic binomial generalised linear model with a complementary log-log 
link, and an offset term for log-age. That previous model used a predictive covariate derived from 
principal components analysis of lag-distributed income (LDI) and the proportion of the population with 
access to improved water.  

 

Acute hepatitis B and C 

Flowchart 

 

 

Acute hepatitis B 
Case definition 
We define acute hepatitis B as the period corresponding to initial infection with the hepatitis B virus, 
regardless of symptoms. It includes all ICD-10 codes under the heading B16 (Acute hepatitis B). 
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Input data 
Model inputs 

We use hepatitis B surface antigen (HBsAg) seroprevalence data from population-based studies and 
surveys. We present a summary of the seroprevalence data sources in Table 3 below. The last systematic 
review was performed as part of GBD 2013. Updates to systematic reviews are performed on an ongoing 
schedule across all GBD causes; an update for hepatitis B will be performed in the next one to two 
iterations.  

Table 3: Data Inputs for acute hepatitis B morbidity modelling by parameter. 

 Prevalence 
Site-years (total) 420 
Number of countries/subnational locations with data 74 
Number of GBD regions with data (out of 21 regions) 19 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 

We also use cause-specific mortality rate (CSMR) data, which is obtained through the hepatitis mortality 
modelling process. The generation and incorporation of the CSMR data is described further in the 
modelling strategy section below. 

 

Modelling strategy 
We model the incidence of chronic HBsAg carriage using a full DisMod-MR 2.1 model of HBsAg 
seroprevalence. We then convert incidence of chronic carriage to total incidence of hepatitis B infection 
by dividing age-specific estimates of the incidence of chronic carriage by age-specific estimates of the 
probability of infection resulting in carriage based on Edmunds and colleagues [2]: 
 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 6 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝑠𝑠) =  0.885 
 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 6 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑠𝑠 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎 < 25 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) =  𝑒𝑒−0.645 ×𝑎𝑎𝑎𝑎𝑎𝑎0.455
 

 
𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 25 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) =  𝑒𝑒−0.645 ×250.455 = 0.061 

 
Starting this round, we introduced a second modelling step after the initial estimation of prevalence and 
incidence. The initial prevalence and incidence estimates are used as covariates for hepatitis B mortality 
due to acute hepatitis, cirrhosis, and liver cancer, as detailed in the causes of death paper. Following 
completion of CoDCorrect, we summed the cause-specific mortality rate (CSMR) due to all three and 
combined the aggregated data with the same dataset of HBsAg seroprevalence. This step ensured 
internal consistency between all hepatitis prevalence and acute hepatitis incidence estimates. We convert 
the incidence of chronic HBsAg carriage to incidence of acute hepatitis B through the same calculation 
described above. 
 

86



We then split symptomatic cases into moderate (73%) and severe (27%) severities based on data from 
McMahon and colleagues [3]. 
 

Sequela Description 
Disability 
Weight 

Moderate Has a fever and aches, and feels weak, which causes 
some difficulty with daily activities.  

0.051 
(0.032–0.074) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

Asymptomatic Infection with no apparent illness. NA 

 
A limitation of this model is that it does not account for lifetime immunity after initial HBsAg infection, 
which may cause incidence estimates to be inflated. In future iterations of GBD, we plan to update the 
model so that individuals can only be considered infected once. 
 
Changes from GBD 2016 to GBD 2017 
We have introduced a second round of modelling incidence and prevalence that combines the 
seroprevalence data with cause-specific mortality rate data from the hepatitis mortality estimation 
process. A new covariate for hepatitis B childhood vaccination was also added to the DisMod-MR 2.1 
model. 
 
 
 

Acute hepatitis C 
Case definition 
We define acute hepatitis C as the period corresponding to initial infection with the hepatitis C virus, 
resulting in anti-HCV IgG seroconversion, regardless of symptoms.  It includes all ICD-10 codes under the 
heading B17.1 (Acute hepatitis C). 

 
Input data 
Model inputs 

To estimate morbidity for hepatitis C, we use anti-HCV seroprevalence data from population-based 
studies and surveys to estimate incidence and prevalence of hepatitis C infection. The last systematic 
review was performed as part of GBD 2013. Updates to systematic reviews are performed on an ongoing 
schedule across all GBD causes; an update for hepatitis C will be performed in the next one to two 
iterations. We present a summary of the data sources in Table 4 below. 

Table 4: Data Inputs for acute hepatitis C morbidity modelling by parameter. 

 Prevalence 
Site-years (total) 333 
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Number of countries/subnational locations with data 75 
Number of GBD regions with data (out of 21 regions) 20 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 
We also use cause-specific mortality rate (CSMR) data, which is obtained through the hepatitis mortality 
modelling process. The generation and incorporation of the CSMR data is described further in the 
modelling strategy section below. 

 

Modelling strategy 
We model the incidence and prevalence of hepatitis C infection using a full DisMod-MR 2.1 model of anti-
HCV seroprevalence data. Starting this round, we introduce a new modelling step after the initial 
estimation of prevalence and incidence. The initial prevalence and incidence estimates are used to 
estimate hepatitis C mortality, as detailed in the causes of death paper. We then run a second DisMod-
MR 2.1 model using anti-HCV seroprevalence data, with the addition of cause-specific mortality rate data 
derived from the mortality estimates for acute hepatitis C, liver cancer due to hepatitis C, and cirrhosis 
due to hepatitis C.  
 
We estimate chronic infections from total incident infections by multiplying by the probability an incident 
infection will be chronic. We estimate this probability using cases reported in Guadagnino and colleagues 
1997, sampling from a beta distribution (table 6) [4]. 

Table 5. Percentiles of the probability distribution of chronic hepatitis C 

  

Of the remaining acute infections, we divide incident infections into asymptomatic (75%), moderate 
(24%), and severe (1%) states based on expert opinion. 
 

Sequela Description 
Disability 
Weight 

Moderate Has a fever and aches, and feels weak, which causes 
some difficulty with daily activities.  

0.051 
(0.032–0.074) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

Asymptomatic Infection with no apparent illness. NA 

 
Changes from GBD 2016 to GBD 2017 
We have introduced a second round of modelling incidence and prevalence that combines the 
seroprevalence data with cause-specific mortality rate data from the hepatitis mortality estimation 
process.  

0 percentile 25 percentile 50 percentile 75 percentile 100 percentile 
0.65 0.73 0.75 0.76 0.83 
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Acute hepatitis E 

Flowchart 

 

 
Case definition 
We define acute hepatitis E as an infection with the hepatitis E virus resulting in anti-HEV IgG 
seroconversion, regardless of symptoms. It includes all ICD-10 codes under the heading B17.2 (Acute 
hepatitis E). 

 
Input data 
Model inputs 

We use anti-HEV seroprevalence data from population-based studies and surveys to estimate incidence 
of infection. The last systematic review was performed as part of GBD 2013. Updates to systematic 
reviews are performed on an ongoing schedule across all GBD causes; an update for hepatitis E will be 
performed in the next one to two iterations. We present a summary of the data sources in Table 5 below.   

Table 5: Data Inputs for acute hepatitis E morbidity modelling by parameter. 

 Prevalence 
Site-years (total) 91 
Number of countries/subnational locations with data 43 
Number of GBD regions with data (out of 21 regions) 19 
Number of GBD super-regions with data (out of 7 super-regions) 7 
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Modelling Strategy 
We model the incidence of hepatitis E using a full DisMod-MR 2.1 model of anti-HEV seroprevalence, 
assuming no remission. Based on information published by Rein and colleagues [5], we assume that the 
probability of symptomatic infection increases with age from ~1% in the first year of life to ~60% in 
adulthood.   
 
The table below illustrates the sequelae associated with acute hepatitis E, along with their descriptions 
and disability weights. 
 

Sequela Description 
Disability 
Weight 

Moderate Has a fever and aches, and feels weak, which causes 
some difficulty with daily activities.  

0.051 
(0.032–0.074) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

Asymptomatic Infection with no apparent illness. NA 

 
Changes from GBD 2016 to GBD 2017 
We have made no substantive changes in the modelling strategy from GBD 2016.  
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Neglected Tropical Diseases (NTDs) SDG Capstone Appendix 

African trypanosomiasis, Chagas disease, cystic echinococcosis, cysticerosis, dengue, 

food‐borne trematodiases, intestinal nematode infections, leishmaniosis, leprosy, 

lymphatic filariasis, onchocerciasis, rabies, schistosomiasis, and trachoma 

 

Indicator definition 
This modeling strategy encompassed the indicator associated with neglected tropical disease prevalence 

(3.3.5). 

Indicator 3.3.5 

As a component of SDG Goal 3. Ensure healthy lives and promote well‐being for all at all ages, SDG Target 

3.3, by 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and 

combat hepatitis, water‐borne diseases and other communicable diseases, is measured using SDG 

Indicator 3.3.3, prevalence of neglected tropical diseases. 
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3.3.5 Human African Trypanosomiasis (HAT) SDG Capstone Appendix 
 

Flowchart 
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African trypanosomiasis

 
 
Input Data & Methodological Summary 
 
Case Definition 
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne disease which is 
transmitted by the bite of the tsetse fly. It is caused by the parasite Trypanosoma brucei with two 
subspecies, namely T.b. rhodesience (makes up less than 5% of total HAT cases) and T.b. gambiense. 
Cases are diagnosed through laboratory methods which rest on finding the parasite in body fluid or tissue 
by microscopy. In highly endemic or epidemic areas where the likelihood of false positives in serological 
tests is deemed lower, a seropositive individual is considered affected even in the absence of 
parasitological confirmation. The ICD-10 codes for HAT are B56.0, B56.1 and B56.9. 

 
Input data 
Model inputs 

Data sources for GBD 2017: 

1) Annual case totals 1980–2016: National-level annual case totals from 1990–2016 were obtained 
from the publicly available data via WHO, available here:  
http://apps.who.int/gho/data/node.main.A1635?lang=en  
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Table of case data counts 

  Incidence 
Site-years (total) 611 
Number of countries with data 25 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 1 

 

 
Subnational data:  

Kenya: Kenyan subnational estimates are attributed to Busia County. Identification of 
subnational locations for Kenyan case data were obtained via studies published in the 
peer-reviewed literature1 and review of maps published from via the WHO HAT Atlas2: 
http://www.who.int/entity/trypanosomiasis_african/country/Kenya_whole_0014.jpg?ua
=1.  
 

 
2) Age/sex data: Data on the age and sex distribution of HAT cases were extracted from the peer-

reviewed literature via a systematic review of sources identified in PubMed using the following 
search string: 

 

((African trypanosomiasis[Title/Abstract] AND (incidence[Title/Abstract] OR 
burden[Title/Abstract] OR prevalence[Title/Abstract] OR community[Title/Abstract])) 
AND (“1990”[Date – Publication] : “2017”[Date – Publication])) 

This yielded 219 studies, of which only three met the inclusion criteria and were 
extracted3-5. The inclusion criteria were: 

1. Studies representative of the national population 
2. Population-based studies 
3. Studies with primary data on incidence 
4. Studies of human African trypanosomiasis (excluded studies on animal African 

trypanosomiasis) 
 

Table data counts for age/sex-specific prevalence and incidence 

  Incidence Prevalence 
Site-years (total) 2 1 
Number of countries with data 2 1 
Number of GBD regions with data (out of 21 regions) 2 1 
Number of GBD super-regions with data (out of 7 super-regions) 1 1 
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3) Population at risk estimates 1980–2015: population at risk estimates from GBD 2010 ArcGIS 
analysis using geocoded case notifications for 2000 to 20092 and population Count Grid estimates 
from Gridded Population of the World. 

 

Table of data counts for population at risk estimates 

 Other 
Site-years (total) 751 
Number of countries with data 24 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 1 

 

 
4) Screening coverage: Data on active versus passive screening coverage were obtained from a 

Weekly Epidemiological Report6 identifying the population screened from 1997 to 2004 at the 
national level.  
 
Table of data counts for screening coverage data 

  Other 
Site-years (total) 109 
Number of countries with data 29 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 1 

 
 

5) Geographic restrictions: Data file of all GBD locations, defining location as either endemic or non-
endemic for HAT. Estimates are not produced for non-endemic countries, nor are they generated 
for countries with a history of HAT transmission but no data reported by WHO from 1990 to 
2016.  

 
Modelling strategy 
 
Geographic restrictions 
For countries historically considered endemic for HAT, but which have no reported case data or estimate 
of the population at risk, estimates are not produced. These countries include Botswana, Ethiopia, 
Guinea-Bissau, and Rwanda.  
 
Among countries where population at-risk data are available, if no cases were reported to WHO, we 
assume the incidence of HAT is zero for those years and generate model estimates accordingly.  
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Modelling steps 
Non-fatal estimates for HAT were generated as follows: 
 

1. The incidence of reported HAT cases among the population at-risk was calculated as the total 
number of reported cases divided by the population at-risk estimates generated by the GBD 
working group for the period 1980–2015. Population at-risk estimates for 2016–2017 were 
generated by assuming an annual 2% rate of population growth.  
 

2. To estimate the number of cases that were likely undetected by country and year, a multi-level 
mixed-effects linear regression of log-transformed incidence rate (ratio of reported HAT cases to 
population at risk) on log-transformed screening coverage (ratio of number screened for HAT to 
population at risk), with country random effects, was performed. Gaps were then filled using 
interpolation between years and extrapolation from 2016 to 2017 for reported cases. This model 
generates a beta-coefficient which is used to estimate the case detection rate (see step 4). 
 
For country-years in which no screening coverage data were reported: 

• Among countries with data reported, 1997–2004, the proportion of the at-risk 
population screened from 1997 was used retrospectively for the period 1980–1996 and 
the screening coverage from 2004 was carried forward from 2005–2017. 

• For countries with no screening data reported, the mean screening coverage for the 
region was used to impute a value over time.  

 
3. Assuming the same proportion in treated (reported) and untreated (undetected) cases, the 

incidence estimates were then split into the two sequelae, skin disfigurement and sleeping 
disorder. This was done by generating 1,000 draws of the splitting proportion for the sequelae 
(70%–74% with sleeping disorder) based on a study that reported presence of symptoms at 
admission of patients in treatment centers7. Draws were generated from a beta distribution with 
alpha parameter = 1884 and beta parameter = 649. 
 

4. To compute prevalence of HAT, 1,000 draws of total duration of symptoms in untreated cases 
were generated from a normal distribution with mean = [ln(3) – 0.5 * sigma^2], and standard 
deviation = sigma, where sigma = [ln(4.39)-ln(1.92))/(invnormal(0.975)*2)]:  these parameters 
were based on a study of T.b. gambiense7 which estimated an average duration of three years to 
untreated cases. An estimated duration of six months was applied to cases that received 
treatment, based on findings from a paper about T.b. rhodesiense in Uganda8.  
 

5. Prevalence was then estimated from the incident cases before applying age pattern. Prevalence 
of treated and untreated cases were summed up, assuming that untreated cases have been 
prevalent up to their death for a certain duration9. For untreated cases, it was assumed that half 
the duration is spent with sleeping disorder (severe motor and cognitive impairment) and 
disfigurement7. Treated (ie, reported) cases are assumed to have been prevalent for 0.5 years, 
and for the fraction of treated cases that present with sleeping disorder, it was assumed that this 
is present for half the total duration and that the rest of the duration is spent suffering from 
disfiguring skin disease. Among reported cases assumed to be detected prior to stage 2 infection, 
we do not attribute any of the duration of morbidity to sleeping disorder.  
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6. Finally, an age-pattern was applied to the prevalence estimates using the incidence studies from 
Sudan5, DRC3, and Uganda4. The age-pattern in GBD 2017 employed a cubic spline to account for 
the higher risk of infection among working-age adults.   

 

Severity splits/sequelae 

The basis of the GBD disability weight (DW) survey assessments are lay descriptions of sequelae 
highlighting major functional consequences and symptoms. The lay descriptions and disability weights for 
HAT sequelae due to HAT are shown below. 

Sequela Lay description DW (95% CI) 
Skin 
disfigurement, 
level 1   

has a slight, visible physical deformity that is sometimes 
sore or itchy. Others notice the deformity, which causes 
some worry and discomfort. 

0.027 
(0.015–0.042) 

Motor plus 
cognitive 
impairments, 
severe 

cannot move around without help, and cannot lift or hold 
objects, get dressed or sit upright. The person also has 
very low intelligence, speaks few words, and needs 
constant supervision and help with all daily activities 

0.542 (0.37–0.702) 
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3.3.5 Chagas disease SDG Capstone Appendix 
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Case definition 
Chagas disease is defined by infection with the protozoa Trypanosoma cruzi, which is transmitted by 
Triatominae insect vectors (most common), blood transfusion, organ transplant, and congenital 
transmission. It includes an acute phase corresponding with the time of infection, and is typically 
asymptomatic. Chronic infection may be latent (ie, asymptomatic), or result in cardiovascular or digestive 
sequelae. It includes all ICD-10 codes under the heading B57 (Chagas disease), with codes B57.0-B75.1 
corresponding to the acute phase, B57.2 corresponding to chronic cardiovascular sequelae, and B57.3 
corresponding to chronic digestive sequelae.  

Input data 
Model inputs 

For GBD 2017 estimation, we used seroprevalence data to model Chagas. The table below illustrates the 
geographic distribution of model input data for the estimation process.  

Table 1. Data Coverage 

 Prevalence 
Site-years (total) 78 
Number of countries with data 13 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 2 
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We also use CSMR estimates in the modelling process, which will be addressed in further detail below. 

 
Modelling strategy  
We modelled Chagas disease using a full DisMod-MR 2.1 Bayesian meta-regression model incorporating 
seroprevalence data, as above, and CSMR estimates. We assume no remission. We eliminate all new 
infections, except those via vertical transmission, in Chile and Uruguay for years after the interruption of 
vector-based transmission (Abad-Franch F, Diotaiuti L, Gurgel-Gonçalves R, Gürtler RE. Certifying the 
interruption of Chagas disease transmission by native vectors: cui bono? Mem Inst Oswaldo Cruz 
2013;108:251–4.; Coura JR. Chagas disease: control, elimination and eradication. Is it possible? Mem Inst 
Oswaldo Cruz 2013;108:962–7.). For non-endemic countries, we estimate the prevalence of imported 
chronic infections based on migration. For each non-endemic country, we estimate the total number of 
people infected with Chagas as the sum of the number of immigrants from each endemic country 
multiplied by the corresponding prevalence of Chagas in that endemic country.  
 
We estimate five sequelae: symptomatic acute infection from incidence; and megaviscera, heart failure, 
atrial fibrillation, and chronic asymptomatic infection from prevalence. We assume that 5% of acute 
infections will be symptomatic (Teixeira AR, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA. Chagas 
disease. Postgrad Med J 2006;82:788–98.). The proportion of chronic infections resulting in a given 
sequela varies by sex and age: the prevalence of megaviscera among those infected with Chagas ranges 
from 0% in children to nearly 10% among older adults (Coura JR, Naranjo MA, Willcox HP. Chagas’ disease 
in the Brazilian Amazon: II. A serological survey. Rev Inst Med Trop São Paulo 1995; 37:103–7.); the 
prevalence of atrial fibrillation attributable to Chagas ranges from 0% among children to approximately 
10% in men over 80 years of age (Ribeiro AL, Marcolino MS, Prineas RJ, Lima-Costa MF. 
Electrocardiographic abnormalities in elderly Chagas disease patients: 10-year follow-up of the Bambuí 
Cohort Study of Aging. J Am Heart Assoc 2014;3:e000632.); and the prevalence of heart failure 
attributable to Chagas among those who are infected ranges from 0% among young children, to a 
maximum of 23% among men over 80 years of age (Sabino EC, Ribeiro AL, Salemi VM, et al., for the 
National Heart, Lung, and Blood Institute Retrovirus Epidemiology Donor Study-II (REDS-II), International 
Component. Ten-year incidence of Chagas cardiomyopathy among asymptomatic Trypanosoma cruzi-
seropositive former blood donors. Circulation 2013;127:1105–15.). 
 

Severity splits and disability weights 
 
The table below illustrates the sequelae, lay descriptions, and DWs for Chagas disease.  
 
Table 2. Sequelae, lay description and DWs 
 

Sequelae Description 
Disability 
Weight 

Atrial fibrillation and 
flutter due to Chagas 
disease 
 

Has periods of rapid and irregular heartbeats and occasional 
fainting.  

0.224 
(0.151–
0.312) 
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Mild heart failure due 
to Chagas disease 

Is short of breath and easily tires with moderate physical 
activity, such as walking uphill or more than a quarter-mile on 
level ground. The person feels comfortable at rest or during 
activities requiring less effort. 
 

0.041 
(0.026–
0.062) 

Moderate heart failure 
due to Chagas disease 

Is short of breath and easily tires with minimal physical 
activity, such as walking only a short distance. The person 
feels comfortable at rest but avoids moderate activity. 
 

0.072 
(0.047–
0.103) 

Severe heart failure 
due to Chagas disease 

Is short of breath and feels tired when at rest. The person 
avoids any physical activity, for fear of worsening the 
breathing problems.  
 

0.179 
(0.122–
0.251) 

Mild chronic digestive 
disease due to Chagas 
disease 
 

Has some pain in the belly that causes nausea but does not 
interfere with daily activities. 

0.011 
(0.005–
0.021) 

Moderate chronic 
digestive disease due to 
Chagas disease 
 

Has pain in the belly and feels nauseated. The person has 
difficulties with daily activities.  
 

0.114 
(0.078–
0.159) 

Acute Chagas disease Has a fever and aches, and feels weak, which causes some 
difficulty with daily activities.  
 

0.051 
(0.032–
0.074) 

Asymptomatic Chagas 
disease 

Latent Chagas infection (ie, chronic infection with no 
apparent symptoms) 

NA 

 
 

Changes from GBD 2016 to GBD 2017 
We have made no substantive changes in the modelling strategy for endemic countries from GBD 2016 to 
GBD 2017. 
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3.3.5 Cystic Echinococcosis SDG Capstone Appendix 

Flowchart 

 
Input Data & Methodological Summary 
Case definition 
Cystic echinococcosis is a parasitic disease caused by infection with the Echinococcus granulosis 
tapeworm. It is a natural parasite of canines, with sheep being the most common intermediate host in the 
two-stage lifecycle, but can be spread to humans through ingestion of soil, water, or food contaminated 
with the fecal matter of an infected dog containing infective eggs. Diagnosis is made by clinical findings, 
imaging, serology, and tissue pathology. The ICD-9 and ICD-10 codes for echinococcosis are 122.0-122.9 
and B67-B67.9, respectively. 

Input data 
Systematic Literature Review 
The non-fatal estimation for cystic echinococcosis (CE) focused on estimating incidence and prevalence of 
CE and its sequelae. A systematic review of literature was conducted in PubMed for GBD 2015 using the 
following search string:  

("echinococcosis"[Title/Abstract] OR "hydatid disease"[Title/Abstract] OR 
"hydatidosis"[Title/Abstract] OR "echinococcal disease"[Title/Abstract] OR "Echinococcus 
granulosus infection"[Title/Abstract]) AND (“1990”[Date – Publication] : “2015”[Date – 
Publication]) AND (epidemiology OR incidence OR prevalence).  

This yielded 1,619 studies of which 279 were included during the title/abstract screening. Following the 
full-text screening, 77 studies (32 incidence, 43 prevalence, and 2 both) were included and extracted – 
studies were excluded because of one or more of the following reasons: 

1. study not population-based 
2. study does not have primary data on prevalence and/or incidence 
3. study not in humans 
4. study on sub-populations 
5. review study 
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Since we were interested in modelling symptomatic CE cases, we only used data on incidence of patients 
diagnosed by imaging techniques (mainly ultrasonography). Therefore, we excluded prevalence data, 
which were mostly from serological studies. Data from these extracted studies were combined with data 
from studies extracted during GBD 2013.  

Hospital data 
Hospital data prepared by the GBD team were used as additional input into our models. These data were 
adjusted to account for multiple hospital episodes of a single case and non-primary diagnoses. The table 
below displays the site-years by geography for both the systematic review and hospital data combined. 

Table 1a. Site-years from systematic review and hospital data for GBD 2017 

  Incidence 

Site-years (total) 1,338 

Number of countries with data 49 

Number of GBD regions with data (out of 21 regions) 17 

Number of GBD super-regions with data (out of 7 super-regions) 7 

 

Geographic restrictions 
We conducted a literature review to determine the geographic extent of the disease and classify locations 
based on whether the disease is absent or present in each year. Locations that were geographically 
restricted in any given year did not have estimates made. Of note, we did not attempt a complete 
systematic review, since a single high-quality source could offer sufficient evidence of presence. Evidence 
of absence or presence was not available for every location for each year, and so assumptions were made 
for missing years by taking into consideration the epidemiological characteristics of the disease.   

If evidence indicated disease presence for two non-consecutive years, we assumed presence for all years 
between the two. If evidence indicated disease absence for two non-consecutive years, we assumed 
absence for all years between the two. If evidence indicated a change in status (ie, from absent to 
present, or present to absent) between two non-consecutive years, then we conducted targeted searches 
to ascertain the relevant year of introduction or elimination for that location. In the cases where presence 
or absence information was missing for the start or end years of our study interval (1990–2017) without 
evidence of any introduction or elimination events within the interval, we applied the status of the first 
and last presence/absence observations respectively to all years between the interval bound and the 
observation year. For cystic echinococcosis, we performed targeted searches to classify location-years in 
PubMed and Google Scholar. Geographic restrictions were populated by reviewing sources referenced by 
Deplazes and colleagues along with ad hoc searches in PubMed for evidence of active transmission of 
cystic echinococcosis in respective countries [1]. 

Sequelae due to cystic echinococcosis 
The table below shows the sequelae due to echinococcosis and their associated disability weights. 

Table 2. Sequelae, lay descriptions, and disability weights (DWs) 
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Sequela Lay description DW (95% CI) 
Chronic respiratory disease “has cough and shortness of breath after heavy 

physical activity, but is able to walk long distances 
and climb stairs.” 

0.019 (0.011–0.033) 

Abdominal problems “has pain in the belly and feels nauseated. The 
person has difficulties with daily activities.” 

0.114 (0.078–0.159) 

Epilepsy (Combined DW) NA 
 

Modelling strategy 
The morbidity model for cystic echinococcosis involved a multi-step process. First, DisMod-MR was used 
to model incidence and prevalence of symptomatic cystic echinococcosis using incidence data from 
systematic reviews in GBD 2013 and 2015 and hospital data, excess mortality rate estimates, and an 
assumed remission of 0.15–0.25 per case per year (duration 2–6.7 years, average 5 years). Estimates of 
excess mortality rate were obtained by pulling death estimates from our CoD model. The following steps 
were followed to estimate excess mortality rate: 1) create custom age groups for CE deaths with 
uncertainty; 2) calculate CSMR as CSMR=deaths/population at the 1,000 draw level – calculate mean 
CSMR, uncertainty interval, and standard error; and 3) calculate EMR as EMR=CSMR/(prevalence), where 
prevalence = (incidence*5) – standard error of EMR was calculated taking into consideration the standard 
errors of both prevalence and CSMR. Geographic restrictions were applied to set incidence and 
prevalence to zero in location-years where the disease was not endemic. These computations provided 
655 site-years of EMR data. 

Table 3. DisMod model covariates 

Covariate Type Parameter Exponentiated beta 

Sex Study-level Incidence 0.66 (0.63–0.70) 

Urbanicity Country-level Incidence 1.00 (0.98–1.00) 

Echinococcosis endemicity Country-level Incidence 6.03 (5.75–6.37) 

Proportion of population involved 
in agricultural activities 

Country-level Incidence 1.00 (1.00–1.00)  

Sex Study-level Excess mortality rate 1.63 (1.56–1.70) 

 

After producing all-case prevalence draws, 1,000 draws of proportions for abdominal, respiratory, and 
epileptic symptoms among echinococcosis cases adding up to 1 were generated. Uncertainty in the 
splitting proportions was captured by drawing them from a Dirichlet distribution, informed by published 
data on cysts localization [2]. On average, the proportions of abdominal, respiratory, and epileptic 
symptoms due to echinococcosis were 0.5, 0.47, and 0.03, respectively. These proportions were used to 
split the prevalence and incidence from DisMod into the three sequelae. 

Model evaluation was done by separately assessing the fit of the DisMod MR model and checking the 
estimates produced after estimating incidence and prevalence of sequelae due to cystic echinococcosis. 
Plots of time trends of incidence and prevalence across locations and age were used to evaluate the 
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results. In addition, maps of the global distribution of incidence and prevalence were assessed across 
time. 
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and Cystic Echinococcosis. Advanced Parasitology. 2017. 95: 315-493. 

2. Raether W, Hänel H. Epidemiology, clinical manifestations and diagnosis of zoonotic cestode 
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3.3.5 Cysticercosis SDG Capstone Appendix 
 

Flowchart 

 
 
Input Data & Methodological Summary 
 
Case Definition 
Cysticercosis, or neurocysticercosis (NCC), is a parasitic disease caused by the pig tapeworm Taenia 
solium. It is transmitted via ingestion of eggs or gravid proglottids shed by a human or non-human host 
with an intestinal infection of the same helminth known as Taeniasis. In rare cases, auto-infection is also 
possible among people with intestinal infections. Diagnosis is made by magnetic resonance imaging (MRI) 
or computerized tomography (CT) brain scans to identify cysts. The ICD-10 codes for cysticercosis are 
B69-B69.9. 

 
Input data 
Systematic literature review 
The nonfatal estimation for cysticercosis focused on estimating prevalence of NCC among epileptics at 
risk as well as the prevalence of NCC with epilepsy. A systematic review of literature was conducted in 
PubMed for GBD 2015 using the following search string:  
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("cysticercosis"[Title/Abstract] OR "neurocysticercosis"[Title/Abstract] OR 
"cysticerciasis"[Title/Abstract] OR "Taenia solium"[Title/Abstract]) AND (“1990”[Date – 
Publication] : “2015”[Date – Publication]) AND (epidemiology OR prevalence)).  

This yielded 1,038 studies, of which 166 were included during the title/abstract screening. Following the 
full-text screening, 17 studies were included and extracted – studies were excluded because of one or 
more of the following reasons: 

1. study not in epileptics 
2. study not population-based 
3. study does not have primary data on prevalence of NCC among epileptics at risk 
4. study not in humans (some studies were on cysticercosis in pigs) 
5. study on comorbidities with NCC (other than epilepsy) 
6. study on sub-population, eg, patients with neurological disorders 
7. review study 

 
The table below displays the number of site-years by geography: 

Table 1. Site-years for GBD 2017 

  Prevalence 

Site-years (total) 31 

Number of countries with data 14 

Number of GBD regions with data (out of 21 regions) 8 

Number of GBD super-regions with data (out of 7 super-regions) 4 

 

A study-level covariate was also created in GBD 2015 to indicate the type of diagnosis for each study, ie, 
definitive or probable. Of the 77 rows of country-year-age-sex data, there were 15 rows with definitive 
diagnosis and 62 rows with probable diagnosis. 

Covariates 
Data were ascertained from the PEW Research Center [1] on the proportion of the population that is 
Muslim and incorporated as a continuous covariate with a range between 0 and 1. 

Epilepsy envelope 
The modelling process incorporates 1,000 draws of epilepsy envelope prevalence from the GBD 2017 
epilepsy DisMod-MR model – details on this modelling process can be found elsewhere. 

Geographic restrictions 
We conducted a literature review to determine the geographic extent of the disease and classify locations 
based on whether the disease is absent or present in each year. Locations that were geographically 
restricted in any given year did not have estimates made for them. Of note, we did not attempt a 
complete systematic review, since a single high-quality source could offer sufficient evidence of presence. 
Evidence of absence or presence was not available for every location for each year, and so assumptions 
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were made for missing years by taking into consideration the epidemiological characteristics of the 
disease.  

If evidence indicated disease presence for two non-consecutive years, we assumed presence for all years 
between the two. If evidence indicated disease absence for two non-consecutive years, we assumed 
absence for all years between the two. If evidence indicated a change in status (ie, from absent to 
present, or present to absent) between two non-consecutive years, then we conducted targeted searches 
to ascertain the relevant year of introduction or elimination for that location. In the cases where presence 
or absence information was missing for the start or end years of our study interval (1990–2017) without 
evidence of any introduction or elimination events within the interval, we applied the status of the first 
and last presence/absence observations, respectively, to all years between the interval bound and the 
observation year. For cysticercosis, we performed targeted searches to classify location-years in PubMed 
and Google Scholar. In our searches, we compiled 21 peer-reviewed articles, meta-analyses, and WHO 
reports. 

Modelling strategy 
DisMod-MR was used to model the prevalence of NCC among epileptics at risk. In the model, pigs raised 
in extensive agricultural systems per capita, SDI, and religion (binary, >50% Muslim) were used as 
country-level covariates. In addition, the prevalence of “definitive diagnosis” was transformed to that of 
“probable and definitive diagnosis” so as to not underestimate overall prevalence. 

Table 2. DisMod model covariates 

Covariate Type Parameter Exponentiated beta 

Sex Study-level Prevalence  0.76 (0.31–1.73) 

Definitive diagnosis Study-level Prevalence 0.56 (0.37–0.87) 

Religion (binary, > 50% Muslim) Country-level Prevalence 0.48 (0.17–0.98) 

Socio-demographic Index Country-level Prevalence 0.35 (0.14–0.95)  

Pigs raised in extensive 
agricultural systems per capita  

Country-level Prevalence 2.31 (1.02–6.79) 

 

After running DisMod, we adjusted the fraction of people with epilepsy attributable to cysticercosis in 
endemic countries for the population at risk based on the proportion of the population without access to 
sanitation and the proportion of the population that is Muslim. The following is the computation for 
estimating NCC prevalence among epileptics at risk: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗
𝑁𝑁𝑁𝑁 − 𝑁𝑁
𝑁𝑁𝑁𝑁 − 1

 

Where prevalence = prevalence of all-cause epilepsy in total population, N = proportion of NCC among 
epileptics at risk (non-Muslims without access to sanitation), and M = proportion of population not at risk 
of contracting NCC. It was assumed that the prevalence of epilepsy due to causes other than NCC is the 
same regardless of whether a population is at risk or not. It was also assumed that Muslims and non-
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Muslims have equal access to sanitation. Geographic restrictions were applied to set prevalence to zero in 
non-endemic locations. 

Model evaluation was done by separately assessing the fit of the DisMod-MR model and checking the 
estimates produced after estimating prevalence of NCC with epilepsy. Plots of time trends of prevalence 
across locations and age were used to evaluate the results. In addition, maps of the global distribution of 
prevalence of NCC among epileptics at risk and prevalence of NCC with epilepsy were also assessed 
across time. 

Several changes were made compared to the GBD 2016 modelling strategy. First, we made slight changes 
to model parameters in DisMod-MR to improve model fit. Second, we incorporated two new covariates 
(ie, pigs raised in extensive agricultural systems per capita, SDI) to better inform the model. Lastly, we 
updated geographic restrictions and updated proportion of population with Muslim data by imputing 
subnational locations with national proportions due to a lack of data at the subnational level. 

References: 
1. “Table: Muslim Population by Country Pew Research Center, Washington, D.C.” (July 7, 2017). 

http://www.pewforum.org/2011/01/27/table-muslim-population-by-country/ 
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3.3.5 Dengue SDG Capstone Appendix 
 

 

 
Case definition 
Dengue is mosquito-borne viral infection that causes febrile illness and, in severe cases, jaundice, 
hemorrhage, and death. It includes all ICD-10 codes under the heading A90 (Dengue fever [classical 
dengue]) and A91 (Dengue hemorrhagic fever). 

Input data 
Model inputs 

For GBD 2016, we modelled dengue incidence based on officially reported cases. The table below 
illustrates the geographic distribution of data points used in our analysis. 

Table 1. Geographies 

Level Incidence 
Data points 2,920 
Studies 70 
Locations 201 
Regions 15 

  

While no systematic update was conducted, we did incorporate new expansion factor data that were 
provided by collaborators and have updated to the latest available case reports for GBD 2017. 

 

Modelling strategy  
The methods used to model dengue incidence remain unchanged from GBD 2016, and are an improved 
variant of the methods used for GBD 2013 that were described by Stanaway et al. Briefly, we derive two 
dengue-specific covariates: first a variable to define the expected spatial distribution of the disease based 
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on principal components analysis of dengue CSMR estimates and dengue transmission probability and, 
second, a variable to define the country-specific trends, based on a mixed-effects model of reported 
cases. We then estimate a mixed-effects negative binomial model with number of reported cases as the 
dependent variable, fixed effects on the aforementioned spatial and temporal covariates, and random 
effects on location. These random effects are assumed to correspond to deviations in reporting 
completeness and, calibrating against published expansion factor data (ie, estimates of the degree of 
underreporting), they are inflated to adjust for underreporting estimates. The resulting incidence 
estimates are split into moderate (94.5%) and severe (5.5%) sequelae, based on the proportion of 
reported cases that were severe. We assume that 8.4% of symptomatic infections will produce post-acute 
chronic fatigue lasting an average of six months (Teixeira L de AS, Lopes JSM, Martins AG da C, Campos 
FAB, Miranzi S de SC, Nascentes GAN. Persistence of dengue symptoms in patients in Uberaba, Minas 
Gerais State, Brazil. Cad Saúde Pública 2010; 26: 624–30.). 

 

Severity splits and disability weights 

Table 2. Sequelae, lay descriptions, and DWs 

Sequela Lay description 
Disability 

Weight (DW) 
Moderate Has a fever and aches, and feels weak, which causes 

some difficulty with daily activities.  
0.051 

(0.032–0.074) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

Asymptomatic Infection with no apparent illness. NA 

 
Changes from GBD 2016 to GBD 2017 
We have made no substantive changes in the modelling strategy from GBD 2016 to GBD 2017. 
 
 
References 
1. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of 
dengue: an analysis from the Global Burden of Disease Study 2013. The Lancet Infectious Diseases 
[Internet]. 2016 Feb [cited 2016 May 23]. 

2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and 
burden of dengue. Nature. 2013 Apr 25;496(7446):504–7. 
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3.3.5 Foodborne Trematodiases SDG Capstone Appendix 
 

Clonorchiasis 

 
 

Fascioliasis 
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Intestinal Fluke 

 

 

Opisthorchiasis 
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Paragonimiasis 

 
 

Input Data & Methodological Summary 

Case definition 
Human foodborne trematodiases (FBT) is defined as the infection with parasitic worms of the class trematoda, 
which are also known as flukes. Trematodes are transmitted via contaminated food, and infection is highly related 
to food habits. Definitive hosts, including humans, become infected when ingesting viable metacercariae by 
consuming contaminated aquatic products (eg, watercress). In the ICD-10, FBT are listed under code B66 [1]. 
 

FBT is subdivided into six types of FBT (see Table 1): 
• Clonorchiasis 
• Fascioliasis 
• Intestinal fluke 
• Opisthorchiasis 
• Paragonimiasis (normal and cerebral infections) 

 

Table 1. Subtypes of FBT 

 Species of FBT Also known as: Carcinogen 

1 Chlonorchiasis (Chinese) Liver fluke Associated with choliangiocarcinoma 

2 Opisthorchiasis 

(O viverrini & O felineus) 

Liver fluke Associated with choliangiocarcinoma 

(O viverrini) 

3 Fascioliasis Liver fluke No available evidence 

113



 
 

4 Intenstinal fluke Liver fluke No available evidence 

5 Paragonimiasis Lung fluke   

 

Thresholds for heavy infection and duration by species of FBT 

The majority of people infected with FBTs are asymptomatic. When symptoms do occur, they are often non-
specific. Among the clinical symptomatic group, severity is associated with worm burden, typically measured by 
fecal egg counts, and the duration of infection. The thresholds for heavy infection and duration by species of FBT 
are shown in Table 2. The clinical presentation of FBT depends on the target organs (liver, lung, or intestines). 
Clonorchiasis and opisthorchiasis patients may suffer from loss of appetite, fullness, indigestion, diarrhoea, pain in 
the right upper quadrant, lassitude, weight loss, ascites, and oedema.[2, 3] Cholangitis, obstructive jaundice, intra-
abdominal mass, cholecystitis, and gallbladder or intrahepatic stones may occur as complications.[3, 4] 
 
Table 2. Thresholds for heavy infection and duration by species of FBT 

 Species of FBT Case thresholds for heavy infection Duration 

1 Chlonorchiasis 10,000 eggs per g of feces lifelong 

2 Opisthorchiasis 10,000 eggs per g of feces lifelong 

3 Fascioliasis 1,000 eggs per g of faces lifelong 

4 Intenstinal fluke 1,000 eggs per g of faces lifelong 

5 Paragonimiasis 100 eggs per 5 ml sputum lifelong 

6 Cerebral paragonimiasis Any infection of the brain with flukes and/or eggs of 

Paragonimus spp. 

lifelong 

 

Input data 

Model inputs 

For GBD 2010, the data came from the expert group and is the result of their analysis. The expert group analysis 
used the results of a systematic literature review performed by Furst and colleagues as a starting point for the 
analysis.[5] Furst and colleagues searched PubMed, WHOLIS, FAOBIB, Embase, CAB Abstracts, Literatura Latino 
Americana e do Caribe em Ciências de Saùde (LILACS), ISI Web of Science, BIOSIS preview, Science Direct, African 
Journals OnLine (AJOL), and the System for Information on Grey Literature in Europe (SIGLE), period Jan 1, 1980, 
to Dec 31, 2008. The initial number of studies identified through the literature review was ~34,000 references. 
The literature review included extracted data from 181 studies. For GBD 2013 and GBD 2015, the search strategy 
was replicated to capture epidemiological studies published between 2008 and 2015.  
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Input data for the assessment of the total national number of infected people  

Only studies that used countrywide surveys to estimate the national prevalence rates were included (or for China, 
province-wide surveys). Reason for choosing only national studies is that FBT shows a highly focal spatial 
distribution and local cross-sectional surveys would profoundly under- or overestimate true national prevalences. 
We decided not to model national and subnational together and get a coefficient on subnational, because there is 
not a one-fits-all relationship across the world. Infection is highly related to food habits, and there are highly 
varying differences between national and subnational prevalence rates. The final GBD 2016 dataset contained 29 
prevalence studies from 17 countries. We used raw data from the selected studies as input for DisMod. 

Prevalence of intestinal fluke infection 

Intestinal fluke is different from the other types of FBT, because there are several pathogens that fall under 
intestinal fluke infection. It can be caused by pathogens, such as Metagonimus spp., Echinostoma spp., and 
Neodiplostomatidae.[6] When assessing the prevalence of intestinal fluke infection, we added the identified 
prevalence for each parasite species in order to obtain the overall prevalence of intestinal fluke infections. This 
approach may lead to a certain overestimation of the true prevalence, because people may be co-infected with 
more than one intestinal fluke species. There is no sufficient evidence about the proportion of co-infections, but 
the resulting overestimation of the true prevalence may be more than offset by the assumptions made in our 
previous modelling approach and the many challenges in generating the underlying epidemiological parameters 
(eg, diagnostic inaccuracy in the detection of infections with the more than 50 intestinal fluke species). Also of 
note: the transmission source of intestinal fluke infections are species-specific and therefore vary. For instance, 
Fasciolopsis buski is usually transmitted by eating raw water plants with the infective parasite stage attached to 
the water plants, whereas Neodiplostomatidae are transmitted by eating undercooked and infested frogs, snakes, 
and tadpoles. Because of these different transmission pathways, the rate of co-infection might in fact be smaller 
than expected. 

Input data to differentiate between asymptomatic and heavy infections 

We estimated the proportion of heavily infected among all infected in all available national and regional cross-
sectional surveys. It is expected that heavy infection increases with age and there are data available on heavy 
infection by age group. We therefore decided to include age-dependent rates of heavy infection for clonorchiasis, 
opisthorchiasis, and intenstinal fluke infection. For (cerebral) paragonimiasis and fascioliasis there were not 
sufficient age-dependent data on high intensity FBT infection.  
 
Total data inputs – Chlonorchiasis 

  Prevalence 
Site-years (total) 121 
Number of countries with data 4 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 3 

 
Total data inputs – Fascioliasis 

  Prevalence 
Site-years (total) 65 
Number of countries with data 8 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 4 
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Total data inputs – Intestinal flukes 

  Prevalence 
Site-years (total) 101 
Number of countries with data 7 
Number of GBD regions with data (out of 21 regions) 5 
Number of GBD super-regions with data (out of 7 super-regions) 4 

 
Total data inputs – Opisthorchiasis 
 

  Prevalence 
Site-years (total) 10 
Number of countries with data 5 
Number of GBD regions with data (out of 21 regions) 3 
Number of GBD super-regions with data (out of 7 super-regions) 2 

 
 
Total data inputs – Paragonimiasis 
 

  Prevalence 
Site-years (total) 74 
Number of countries with data 5 
Number of GBD regions with data (out of 21 regions) 4 
Number of GBD super-regions with data (out of 7 super-regions) 3 

 
Total data inputs – Cerebral paragonimiasis 
 

  Prevalence 
Site-years (total) 4 
Number of countries with data 2 
Number of GBD regions with data (out of 21 regions) 2 
Number of GBD super-regions with data (out of 7 super-regions) 2 

 
 
Modelling strategy 

We used a three-step process for the disease modelling of FBT. In the first step we used DisMod-MR 2.0 to 
estimate the prevalence of FBT by age, sex, year, and country. In the second we differentiated between 
asymptomatic and heavy infections. MetaXL (a meta-analysis add-in for Microsoft Excel) was used to estimate the 
proportion of heavily infected among all infected by age group for clonorchiasis, opisthorchiasis, and intenstinal 
fluke infection (see Table 3 and 4). These proportions were used to estimate the prevalence of heavy FBT 
infection.  
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The third step consisted of deselecting countries that have no autochtonous case reports of FBT (input 34,000 
references from literature review).  
 

Table 3. Percentage of high-intensity infection by age group and type of FBT (based on eight FBT prevalence 

studies) 

Age 
category 

Clonorchiasis Opisthorchiasis Intestinal fluke infection 
Mean Low High Mean Low High Mean Low High 

0-9 30% 17% 44% 10% 0% 29% 8% 3% 14% 
10-19 15% 0% 43% 15% 0% 69% 11% 8% 14% 
20-29 18% 10% 29% 16% 0% 52% 18% 15% 21% 
30-39 17% 5% 34% 21% 0% 56% 22% 17% 28% 
40-49 22% 13% 32% 28% 1% 68% 22% 13% 32% 
50-59 18% 0% 49% 29% 0% 75% 17% 9% 28% 
60+ 32% 18% 47% 25% 0% 64% 15% 8% 23% 

 

Table 4. Percentage of high-intensity infection by type of FBT (based on four FBT prevalence studies) 

Type of FBT 
 

Mean Low High 
Paragonimiasis 23% 0% 59% 
Fascioliasis 19% 3% 41% 

 

Cerebral paragonimiasis 

It was assumed that 0.8% of paragonimiasis cases have cerebral involvement. This proportion was used to 
estimate the prevalence of cerebral paragonimiasis. This proportion is based on one study. The data are from Oh 
SJ. The rate of cerebral involvement in paragonimiasis: an epidemiologic study. Jpn J Parasitol 1969;18:211-14. 
The study was performed in Paju, South Korea. This is an area with 6,738 inhabitants, and according to the survey, 
it was estimated that 29.6% of all individuals would react to intradermal test (= an immunological reaction 
indicating previous or current contact with the parasite). 25% of all “positive reactors” may have eggs in their 
sputum (= active infection with the parasite currently present in the human host). If these rates are applied to the 
community as a whole, the number of patients with active paragonimiasis would be at least 498 
(=6,738*0.296*0.250). Furthermore, four cases of cerebral paragonimiasis were found in this community. 
Therefore, four out of 498 individuals with active paragonimus infection suffered from cerebral infection (=0.80%; 
95% confidence interval 0.019%–1.587%).  

Severity splits and disability weights 

For GBD 2016, FBT was not split into health states with different severities. The table below shows the GBD 2016 
disability weights that were used to calculate the burden of FBT in YLDs. 
  
Table 5. Disability weights that were used to calculate FBT YLDs 

Sequelae  Severity description Health state name Disability weight 

Asymptomatic 
clonorchiasis 

Clonorchiasis, currently without 
symptoms 

N/A 0.000 (0.000–0.000) 
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Heavy 
clonorchiasis 

Abdominal pain and nausea reported as 
moderate 

Abdominopelvic problem, 
moderate 

0.114 (0.078–0.159) 

Asymptomatic 
opisthorchiasis 

Opisthorchiasis,  currently without 
symptoms 

N/A 0.000 (0.000–0.000) 

Heavy 
opisthorchiasis 

Abdominal pain and nausea reported as 
moderate 

Abdominopelvic problem, 
moderate 

0.114 (0.078–0.159) 

Asymptomatic 
fascioliasis 

Fascioliasis, currently without symptoms N/A 0.000 (0.000–0.000) 

Heavy 
fascioliasis 

Abdominal pain and nausea reported as 
moderate 

Abdominopelvic problem, 
moderate 

0.114 (0.078–0.159) 

Asymptomatic 
intestinal fluke 
infection 

Intestinal fluke infection, currently 
without symptoms 

N/A 0.000 (0.000–0.000) 

Heavy intestinal 
fluke infection 

Abdominal pain and nausea reported as 
moderate 

Abdominopelvic problem, 
moderate 

0.114 (0.078–0.159) 

Asymptomatic 
paragonimiasis 

Paragonimiasis, currently without 
symptoms 

N/A 0.000 (0.000–0.000) 

Heavy 
paragonimiasis 

Cough, fever, and weight loss Tuberculosis, not HIV-infected 0.333 (0.224–0.454) 

Cerebral 
paragonimiasis 

Epilepsy due to cerebral paragonimiasis Epilepsy, less severe (seizures 
< once per month) 

0.263 (0.173–0.367) 

  
Epilepsy, severe (seizures >= 
once per month 

0.552 (0.375–0.710) 

Note. N/A: not applicable 

 
Changes from GBD 2016 to GBD 2017 
We conducted an abbreviated literature search based on citations included in published reviews (5) and 
recommendations by Dr. Thomas Furst. We completed extractions for all but five records during the allotted 
timeline. Sources were unable to be extracted due to language barriers and lack of detailed citation information. 
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3.3.5 Dracunculiasis (Guinea worm) SDG Capstone Appendix 
 

 

 

Background 
Guinea-worm disease is caused by the parasitic worm Dracunculus medinensis. The transmission cycle 
begins when Guinea worm larvae are released in stagnant water (e.g., ponds, lakes, open wells) where 
they are ingested by freshwater copepods (small crustaceans sometimes called water fleas) of the genus 
Cyclops [1].  When a person consumes water containing Cyclops, the copepods are dissolved by gastric 
acids and intestinal enzymes and the larvae are released. Larvae then migrate through the intestinal wall 
and travel to the connective tissues. The larvae mature and mate 60–90 days after infection; shortly 
thereafter, the male dies and the pregnant female worm continues to move through the victim’s 
connective tissues. Approximately 10–14 months post-infection, the adult worm creates a painful burning 
blister on the skin that develops and enlarges over several days, usually from the feet or lower limbs. 
Blister formation may be preceded by a slight fever, itchy rash, nausea, vomiting, and diarrhoea. To 
relieve the pain associated with the worm’s emergence, infected persons immerse the infected part of 
their body in local stagnant water sources, such as ponds. Upon entering the water, the female worm will 
expel her larvae and the cycle can begin again [1-4]. 
 
The global campaign to eradicate Guinea worm began in 1980, when the US Centers for Disease Control 
and Prevention (CDC) suggested that Guinea worm eradication would be an ideal indicator of the success 
of the International Drinking Water Supply and Sanitation Decade of 1981–1990; in 1981, Guinea worm 
eradication was adopted as a sub-goal of this United Nations advocacy effort [1, 5]. In 1986, the World 
Health Assembly adopted a resolution to eliminate Guinea worm disease, and since then, the Carter 
Center has led a coalition that includes ministries of health of endemic countries, CDC, the World Health 
Organization (WHO), the United Nations Children’s Fund (UNICEF), thousands of village volunteers, and 
supervisory staff supported by numerous donors [5].    
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To break the cycle of transmission, ministries of health in endemic countries implement a suite of 
interventions: case detection and containment, provision of safe water sources, distribution of filter 
cloths and pipe filters, water source treatment with Abate® (a larvacide), and health education.   
 
By design, the Guinea worm eradication programmatic infrastructure covers the entire at-risk population 
in endemic countries. Since case containment[6] is a key intervention designed to not only interrupt 
transmission but also monitor progress toward eradication, incident cases of Guinea worm disease are 
nationally representative. To implement case containment as an intervention, all cases of Guinea worm 
disease are identified. Containment is defined as detection within 24 hours of the worm’s emergence; the 
patient did not contaminate any water source; the patient received proper wound care and health 
education on not entering any water source; a supervisor verified the case as dracunculiasis within seven 
days; and Abate® is used if there is any uncertainty about contamination of water sources or known 
contamination of water sources [7]. Case reporting occurs at the village level on a monthly basis; case 
data are then aggregated within the national Guinea Worm Eradication Program and reported to WHO. In 
settings where annual case reports are low (suggesting no transmission) or transmission has been 
interrupted, cash rewards are promoted to enhance surveillance activities.  
 

Input Data & Methodological Summary 
Case Definition 
A Guinea worm case is defined as an individual with Guinea worm disease. A person is counted as a case 
only once in a calendar year, ie, when the first Guinea worm emerged from that person, although an 
individual may have more than one worm emerge at a time and/or more than one worm emerge during 
the year. These cases are confirmed through the Guinea worm eradication program infrastructure by 
clinical exam and verification by local supervisors. All specimens from case-patients are sent to the CDC 
for laboratory evaluation and confirmation [7]. 
 

Input data 
Model inputs 

Geographic restrictions 

Only the following countries were identified as guinea-worm endemic as of 1990[8]: Benin, Burkina Faso, 
Cameroon, Central African Republic, Chad, Cote d’Ivoire, Ethiopia, Ghana, India, Kenya, Mali, Mauritania, 
Niger, Nigeria, Pakistan, Senegal, Sudan, South Sudan, Togo, Uganda, and Yemen[8]. Any country not 
reporting Guinea worm as of 1990 is not included in the GBD model.  

Geographic restrictions by year were also implemented to account for the period post-transmission to 
reflect the accomplishments of the Guinea worm eradication campaign. Geographic restriction for 
countries that were endemic in 1990 was defined based on data reported post-interruption of 
transmission. In the GBD analysis, Guinea worm disease was no longer modelled for the year that 
followed the last reported case (imported or indigenous) provided that the subsequent years through 
2017 also had no case reports. To ensure that cases were attributed to burden in the country in which the 
case was detected, both indigenous and imported cases were included. For example, Kenya reported its 
last (imported) case in 2005, and as no other cases were reported through 2017, incidence from 2006 
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onward is zero. For Chad, a country that had years during which no cases were reported, the model 
covers the entire period 1990–2017. 

Data sources  

1) Case data by geography, by year 
2) Literature review of age/sex distribution 
3) Literature review for sequelae (type, duration, and proportion) 
 

Case data: Annual case data were reported by WHO in the Weekly Epidemiological Record for the period 
1990–2017. For years or geographies for which WER reports were not published, the following sources 
were also used to extract case counts: 

1) CDC’s MMWR reports 
2) 1990–1999 total country reports from Hopkins et al[8] 
3) India subnational estimates: India MOH report (1984–1999) 
4) The Carter Center’s Guinea worm wrap-up: disaggregation of case totals for Sudan and South 

Sudan pre-2011 (independence) to ensure case totals from 1990–2010 are consistent with 
current national boundaries; 2016 provisional case data.  

The number of cases annually was compared to official total numbers published in WER 2016 to ensure 
accuracy of data entry.  

Table of incident case data counts 

  Incidence 
Site-years (total) 816 

Number of countries with data 21 
Number of GBD regions with data (out of 21 regions) 5 

Number of GBD super-regions with data (out of 7 super-regions) 3 
 

Subnational data 

India: Subnational data for India were obtained from the Ministry of Health for the period 1984–1999; 
cases were reported by year and state: http://www.ncdc.gov.in/index2.asp?slid=329&sublinkid=216. 

Kenya: Subnational data from Kenya were requested from the MOH but not obtained. To split cases by 
subnational unit, the Carter Center Guinea Worm Wrap-Up was reviewed to identify districts with 
endemic villages. A national survey conducted 1993/1994 found cases in Turkana and West Pokot 
counties, but case totals were not reported by county. Indigenous transmission was interrupted in 1995, 
with imported cases reported until 2005. WER reports from 1999 to 2006 document that all imported 
cases from 1998 to 2005 occurred in Turkana County. All cases in Kenya are currently analysed in GBD as 
occurring in Turkana County as we are unable to disaggregate the data.  
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Accounting for possible under-reporting  

Once national eradication programs were initiated, national case searches were conducted to improve 
the accuracy of national case estimates. These searches were designed to enumerate prevalent Guinea 
worm disease cases and identify endemic villages to direct intervention and surveillance activities. For the 
majority of years included in the GBD analysis, the total number of Guinea worm cases reported is 
equivalent to a national census, as all cases are identified and reported. Nevertheless, not all endemic 
countries were able to initiate full national surveillance as of 1990.   
 
The model does not account for the possibility that cases occurred in communities that were not included 
in routine surveillance or did not achieve 100% reporting coverage over time. However, any cases that 
may have been undetected would likely not have been a significant increase over annual totals given the 
comprehensive nature of Guinea worm disease surveillance activities. Nevertheless, there are years for 
which the annual case data is inconsistent with preceding/following annual case totals and could not be 
accounted for in our model. For example, Niger reported 500 cases in 1992, despite reporting 32,829 
cases in 1991 and 25,346 cases in 1993. In those instances, the following data points were identified as 
outliers and excluded from analysis as follows: 
  
 

Table 1. List of reported case data outliered in the analysis to account for possible under-reporting 
Country Year Reported Cases 
Central African Republic 1996 9 
Central African Republic 1997 5 
Ethiopia 1992 303 
Kenya (Turkana County) 1990 6 
Uganda 1990 4,704 
Uganda* 1992 126,369 
Benin 1991 4,006 
Benin 1992 4,315 
Chad 1992 156 
Cote d’Ivoire 1990 1,360 
Mali 1990 884 
Mauritania 1992 1,557 
Niger  1992 500 
Senegal 1990 38 
Togo 1990 3,042 
Togo 1991 5,118 
South Sudan* 1996 116,844 
Sudan 1994 132 

*For these two data points, we do not dispute that over 100,000 cases of Guinea worm likely occurred. However, given the 
amount of missing data in the early time series for these two countries, inclusion of these resulted in implausibly high case 
predictions (over 1 million cases in Uganda in 1990 and over 1.5 million for South Sudan from 1990 to 1995).   
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Age/sex distribution 

Generally, the risk of Guinea worm infection varies according to sex- or age-specific differences in access 
to safe drinking water. A study in Ethiopia found women were more likely to experience Guinea worm 
disease than men; in India, men experienced greater risk of infection [1]. Exposure to unsafe water 
sources varies largely on mobility patterns and type of water sources: communities in which infected 
water is carried in for consumption are more likely to see more Guinea worm disease in children and 
older adults [9]. Once interventions to control the spread of Guinea worm infection are implemented, the 
age and sex distribution likely changes to reflect variation in coverage and uptake of eradication 
interventions, such as larvacide of water sources and case-containment rates; age/sex case data are 
currently not available.   

 

Table of age-specific prevalence data inputs 

  Prevalence 
Site-years (total) 7 
Number of countries with data 4 
Number of GBD regions with data (out of 21 regions) 3 
Number of GBD super-regions with data (out of 7 super-
regions) 2 

 

The evidence base available to describe risk of infection by age is as follows: 

1) Studies from Nigeria: 
a. Adeyeba et al [10]: Guinea worm disease not common among children <1 year of age; 

increase in risk by age 
b. Kale et al [11]: More boys ages 5-9 years than girls were infected (11.9% v. 6.8%); 

Women ages 20-29 years had higher prevalence of infection than men (13.4% v. 4.7%); 
Overall, the prevalence in both men and women was highest in ages 10-14 years and 30 
years or older.   

c. Greenwood et al [12]: The mean age of male cases was 25.8 years (95% CI: 23.9, 27.7) 
and 26.9 years for females (95% CI: 23.7, 30.1).   

2) Other countries: 
a. Sudan [13]: No significant age trend among lower-endemicity villages; higher-endemicity 

villages (n=4) had higher prevalence in children and older adults. This study attributes the 
difference in age trends to community-level water source.  

b. Ghana [14]: The trend in age of first infection reported was similar for males and females, 
with more females experiencing first infection between 15 and 19 years and males 
between 20 and 24 years of age. The proportion of men with Guinea worm disease was 
much higher than among women 25-54 years of age. Adults >15 years of age were more 
likely to be infected than children.  
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The evidence base available to describe the risk of infection by gender is as follows: 

1) Studies from Nigeria: 
a. Adeyeba et al [10]: No difference among males and females. 
b. Kale et al [11]: No overall gender difference comparing total males infected to total 

females infected, although gender differences for certain age groups (see notes above). 
c. Greenwood et al [12]: Two-thirds of cases reported among 47 villages from 1971 to 1974 

were male.  
 

WHO Weekly Epidemiological Record (WER) age reports: Age and sex data were reported by country for 
2009 onward; these data capture the age distribution for Chad, Ethiopia, Ghana, Mali, and South Sudan. 
We excluded these data as the age/sex distribution is only described for children <15 years or adults, 
which does not permit fitting an age trend across multiple categories.   

WER sex-specific data: Sex-specific differences in the burden of Guinea worm disease could reflect 
differing levels of access to eradication program interventions, in addition to risk factors associated with 
local transmission dynamics. Since the data reported from 2009 to 2015 are the only available nationally 
representative data, we used the overall sex difference to generate sex-specific incidence and prevalence, 
with females experiencing a slightly higher risk (53%) compared to males (47%): 

Table 2. WHO Weekly Epidemiological Record total worm burden by gender, by year 

Year Female Male Total % Fem % Male 
2009 1699 1490 3189 53% 47% 
2010 976 821 1797 54% 46% 
2011 524 534 1058 50% 50% 
2012 273 269 542 50% 50% 
2013 79 69 148 53% 47% 
2014 63 63 126 50% 50% 
2015 9 13 22 41% 59% 
Total 3623 3259 6882 53% 47% 

 

There is limited evidence to suggest that risk varies jointly by sex and age; however, evidence for this 
modification also suggests that such age- and sex-specific risks may vary by endemic community within a 
given geography (in some settings, women at higher risk, in others men, but not for all age strata). 
Without additional data sources in which cases are disaggregated by age and sex, this joint relationship is 
not modelled.   

To model age-specific variation, we used data from seven studies with age-specific case data to generate 
an age-trend in a DisMod model. We further assumed no Guinea worm disease occurred in infants less 
than 1 year of age.  

Severity splits/sequelae 

Sequelae associated with Guinea worm relate to the wound at the site of the worm’s emergence, which 
can include abscesses and chronic ulcerations. Joint and tissue damage can occur, as well as secondary 
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infection in connective tissues [15]. During the worm’s emergence, which takes approximately one month 
to exit the body, the ulcer is painful and itchy [1]. The wound is subject to secondary infection and 
scarring. Possible long-term consequences of Guinea worm infection include arthritis or other permanent 
damage to connective tissues; however, data on this are limited. In the Greenwood study, 41.7% of all 
cases experienced infection at the site of emergence, and the annual proportion of cases with definite 
arthritis ranged from 1.6% to 7.3% of all cases.  

While an individual experiences Guinea worm disease, they are generally unable to work and have limited 
mobility at the time prior and during emergence and in the subsequent period in which they are healing. 
Although most worms emerge in the feet and lower legs, there are reports of worms exiting at other sites 
[15], which could cause other disability not accounted for here. A study in Nigeria found that 98% of 
worms emerged in the lower limbs[16]. The Greenwood study also observed that 88.4% emerged in the 
lower limbs. Therefore, for the purposes of estimating the burden of Guinea worm disease in GBD, all 
disability associated with Guinea worm disease is attributed to lower limb conditions, pain, and lack of 
mobility. Due to limited data, we cannot account for differential disability based on number of worms 
emerging at the same time.  

The following evidence base was reviewed to determine the proportion of cases attributed to each 
sequela, as well as duration of sequelae.  

Duration of disability and type of disability: 

Studies from Nigeria: 

1) Adeyeba et al [10]: 93.4% incapacitated for an average of 26 days. 
2) Smith et al [17]: Average disability duration 12.7 weeks; 58% unable to leave the home for a 

mean duration of 4.2 weeks; duration of disability greater among those older than 50 years 
compared to those younger than 50 years. 

3) Okoye et al [16]: 21% of cases were totally incapacitated due to their infection (not permanently 
disabled). 

4) Kate et al [11]: A survey of 17 villages from 1971 to 1975 found that duration of disability was 
approximately 100 days. 

5) Greenwood et al [12]: Weekly visits to 47 villages from 1971 to 1974 reported mean duration of 
illness ranging from 4.2 weeks to 7.2 weeks. 17.4% of cases had an active infection which 
persisted for 10 weeks or more.  

Other countries: 

6) Benin [18]: From two villages in highly endemic areas, estimated 39-59 days of disability 
experienced after worm emergence. 

7) Ghana [19]: 28.2% experienced pain 12-18 months post-emergence; 5% unable to carry out at 
least one daily activity, 0.5% permanently impaired (ligament damage to thumb). 

8) Ghana [14]: Complete disability experienced among males with Guinea worm disease lasted 
approximately 5 weeks among those untreated. Among cases provided supportive care (wound 
management), the duration of disability was 2.5 weeks.  

For all cases, we assume each experiences pain and disfigurement (level 2), and musculoskeletal 
problems, lower limb (moderate) for a period of one month, followed by two months of pain and 
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disfigurement (mild). We then assume that 30% of all cases will then experience disfigurement level 1 
with itch/pain for an additional nine months (approximately a year of disability) to account for longer-
term disability associated with recovery.    

Table 3. Sequela associated with Guinea worm disease in the Global Burden of Disease study 

Sequela Lay description DW (95% CI) 
Disfigurement, 
level 2, with 
itch/pain 

Has a visible physical deformity that is sore and itchy. Other 
people stare and comment, which causes the person to worry. 
The person has trouble sleeping and concentrating. 

0.188 
(0.125–0.267) 

Disfigurement, 
level 1, with 
itch/pain 

Has a slight, visible physical deformity that is sometimes sore or 
itchy. Others notice the deformity, which causes some worry and 
discomfort. 

0.027 
(0.015–0.042) 

Musculoskeletal 
problems, lower 
limbs, moderate 

Has moderate pain in the leg, which makes the person limp, and 
causes some difficulty walking, standing, lifting and carrying heavy 
things, getting up and down and sleeping. 

0.079 
(0.054–0.11) 

 

Modelling strategy 
Total incidence 

The incidence of Guinea worm disease is modelled in GBD using two approaches: for years and locations 
for which case data were reported, 1,000 draws of incidence were estimated using a beta distribution of 
cases and total population minus cases. For years and locations for which case data were missing (largely 
the early 1990s) a Poisson regression of all case data was implemented per country, using the total 
population as the offset. The predicted incidence and standard error were used to generate a random 
distribution of 1,000 incidence draws. Incidence is multiplied by duration of sequelae to calculate 
prevalence. Country-level incidence predictions are shown in the following figures.  
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Figure 1. Overall comparison of model versus reported cases (excluding outliers) 

 

Sex-specific incidence 

To account for the proportion of cases in females compared to males (53% to 47%), the incidence draws 
were multiplied by the sex proportion and the total population (to estimate number of cases by sex), then 
divided by the sex-specific total population for that year to calculate sex-specific incidence.   

Age-specific incidence 

In order to generate age-specific incidence, a literature search was conducted to identify national and 
subnational data sources in which age-specific prevalence was reported. The only nationally 
representative data available were WER reports from 2009 onward; however, age was only reported as 
less than 15 years of age or older than 15 years of age. In order to generate a trend over the life course, 
eight subnational data sources were identified. The prevalence of Guinea worm disease was extracted by 
age category reported in the original paper. An age trend was then fit using DisMod 2.0, with the 
following model settings: 

Age mesh points: 0 0.01 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 1000 

Drill year: 2000; Drill location: Global; no birth prevalence; 30 year time window 

The age data were used to generate one single-age trend that we assumed applied to all geographies and 
all estimation periods from 1990 to 2017.  
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Figure 2. Age-specific prevalence model generated by DisMod 

 

  

To apply this age prevalence curve to the sex-split incidence draws, 1,000 draws of output were 
downloaded from DisMod and applied to the incidence data as follows: 

j indexes the age strata 

i indexes the draw (1 to 1,000) 

sex cases draw is the total number of cases for the sex stratum (all ages) 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗 =  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝑤𝑤𝑖𝑖,𝑗𝑗 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑗𝑗  

𝑎𝑎𝑔𝑔𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 =
𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑗𝑗 �

𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑗𝑗
  

 

Under the assumption that Guinea worm disease occurs approximately one year post-infection, incidence 
among children aged less than 1 year was set to zero.  

Sequelae splits 

Prevalence of the sequelae listed in Table 3 was calculated by multiplying the age- and sex-specific 
incidence draw by the duration of the health state (in years). 

1) Guinea worm pain associated with worm emergence (Level 2): all cases, 1 month  
2) Guinea worm pain associated with worm emergence (Level 1): all cases, 2 months plus 30% of 

cases for an additional 9 months 
3) Lower limb musculoskeletal problems: all cases, 1 month  
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3.3.5 Ascariasis SDG Appendix 
Flowchart 

 
 
Input data and methodological summary 

Case definition 
Ascariasis is a helminthic disease caused by the parasitic roundworm Ascaris lumbricoides. It is one of the 
three intestinal nematode infections (INI), or soil-transmitted helminthiasis (STH), that are modelled in 
GBD. Diagnosis is made by examination of stool by microscope or PCR, with or without concentration 
procedures. The ICD-10 codes for ascariasis are B77-B77.9. 

Input data 
Global Atlas of Helminth Infections Data 
Input data for this model were primarily compiled from the Global Atlas of Helminth Infections (GAHI) 
database. The GAHI database collates an exhaustive catalog of surveys and studies conducted by 
scientists that attempt to estimate the burden of STH [1]. Each record in the database contained 
metadata (ie, location, year, age range, sex) of each study sample and the prevalence of ascariasis in that 
sample. We excluded data points where the age range of the sample was unknown and retained only 
those surveys where Kato-Katz diagnostics were used. The table below displays the number of site-years 
by geography: 

Table 1a. Site-years for ascariasis from the Global Atlas of Helminth Infections data used in GBD 2017 

  Prevalence 

Site-years (total) 353 

Number of countries with data 62 

Number of GBD regions with data (out of 21 regions) 13 

Number of GBD super-regions with data (out of 7 super-regions) 6 
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Expert Group Data 
Since GBD 2010, we have used prevalence data prepared by the GBD expert group (EG) containing mean 
prevalence with confidence intervals, stratified by location, year (1990, 2005, 2010), age group (0-4, 5-9, 
10-14, 15+ years) and intensity of infection (light, medium, heavy, all). In order to move toward updating 
inputs and methods, we altered our use of these data. For some stages of our processes, we retain 
information from previous GBD cycles and the expert group, detailed below.  

Geographic restrictions 
We conducted a literature review to determine the geographic extent of the disease and classify locations 
based on whether the disease is absent or present in each year. Locations that were geographically 
restricted in any given year did not have estimates made for them. Of note, we did not attempt a 
complete systematic review, since a single high-quality source could offer sufficient evidence of presence. 
Evidence of absence or presence was not available for every location for each year, and so assumptions 
were made for missing years by taking into consideration the epidemiological characteristics of the 
disease.  

If evidence indicated disease presence for two non-consecutive years, we assumed presence for all years 
between the two. If evidence indicated disease absence for two non-consecutive years, we assumed 
absence for all years between the two. If evidence indicated a change in status (ie, from absent to 
present, or present to absent) between two non-consecutive years, than we conducted targeted searches 
to ascertain the relevant year of introduction or elimination for that location. In the cases where presence 
or absence information was missing for the start or end years of our study interval (1990–2017) without 
evidence of any introduction or elimination events within the interval, we applied the status of the first 
and last presence/absence observations, respectively, to all years between the interval bound and the 
observation year. Our search was done in conjunction with the title/abstract screening portion of a 
systematic literature review for prevalence data. The search strings and yield can be viewed in the table 
below for each of the databases queried. 

Table 1b. Geographic restriction search strings 

Database Search String Yield 
PubMed (Ascariasis[Title/Abstract] OR Ascaris[Title/Abstract] OR "A. 

lumbricoides"[Title/Abstract] OR Ascaris[MeSH] OR Trichuris[Title/Abstract] 
OR Trichuriasis[Title/Abstract] OR "Whip Worm"[Title/Abstract] OR "T. 
trichura"[Title/Abstract] OR Trichuris[MeSH] OR Hookworm[Title/Abstract] OR 
"A. duodenale"[Title/Abstract] OR "Ancylostoma duodenale”[Title/Abstract] 
OR ancylostomiasis[Title/Abstract] OR "N. americanus"[Title/Abstract] OR 
“Necator americanus”[Title/Abstract] OR necatoriasis[Title/Abstract] OR 
Ancylostoma [MeSH] OR Necator[MeSH]) AND (prevalence[Title/Abstract] OR 
incidence[Title/Abstract] OR epidemiology[Title/Abstract] OR 
surveillance[Title/Abstract]) NOT(Animals[MeSH] NOT Humans[MeSH]) 

2,376 

Web of 
Science  
 

(Ascariasis OR Ascaris OR A. lumbricoides OR Trichuris OR Trichuriasis OR 
Whip Worm OR T. trichura OR Hookworm OR A. duodenale OR Ancylostoma 
duodenale OR anclyostomiasis OR N. americanus OR Necator americanus OR 
necatoriasis) AND TOPIC:(prevalence OR incidence OR epidemiology OR 
surveillance) NOTTOPIC: ((Animals NOT Humans)) 
Timespan: 1980-2016. Indexes: SCI-EXPANDED, SSCI, A&HCI, ESCI. 

2,266 
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SCOPUS TITLE-ABS_KEY (ascariasis OR ascaris OR a. lumbricoides OR trichuris OR 
trichuriasis OR whip worm OR t. trichura OR hookworm OR a. duodenale OR 
ancylostoma duodenale OR anclyostomiasis OR n. americanus OR necator 
americanus OR necatoriasis) AND PUBYEAR>1979 

29 

 

These papers were used to classify location-years for all locations and years present in the literature. We 
only utilised papers that are explicitly concerned with ascariasis. Additionally, systematic literature 
reviews, meta-analyses, national health statistics publications, and collaborator input were used to 
classify location-years not present in the literature review wherever possible. 

Health states/sequelae 
The table below shows the list of sequelae due to ascariasis and the associated disability weights (DW). 
Prevalence of medium infection and heavy infection were mapped to mild abdominopelvic problems and 
heavy infestation of ascariasiss, respectively. Light infection or asymptomatic was not attributed any 
disability. To inform the wasting model, 1,000 draws of severe wasting prevalence among children under 
5 years were ascertained from GBD 2017 estimates – the methods used to generate estimates of wasting 
prevalence are detailed elsewhere (part of risk factors documentation) [2]. 

Table 2. Sequelae, lay descriptions, and disability weights (DWs) 

Sequela Lay description DW 
Mild abdominopelvic problems  “has some pain in the belly that causes nausea but 

does not interfere with daily activities” 
0.011 (0.005–0.021) 

Heavy infestation “has cramping pain and a bloated feeling in the 
belly” 

0.027 (0.015–0.043) 

Severe wasting “is extremely skinny and has no energy” 0.128 (0.082–0.183) 
Asymptomatic ascariasis N/A N/A 

 

Modelling strategy 
DisMod-MR 2.2 
In the estimation of overall morbidity due to ascariasis, we implemented a three-stage modelling 
framework. The first stage of the modelling process was using DisMod-MR to generate a global age-sex 
curve to disaggregate all-age, both-sex prevalence data. DisMod is an integrated meta-regression 
framework that allows for multiple datasets to be used within a singular analysis regardless of age-
binning, sources, and geographies. As a result, a variety of differently aggregated information can be 
evaluated to generate a consensus output. Our final model contained all processed GAHI data as input 
and was informed by two country-level covariates (ie, all risk factors SEV for unsafe water, and all risk 
factors SEV for unsafe sanitation). From this model, the global fits were used. 

Table 3a. DisMod model covariates 

Covariate Type Parameter Exponentiated beta 

SEV unsafe water Country-level Proportion  4.41 (4.22–4.48) 
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SEV unsafe sanitation Country-level Proportion 4.45 (4.35–4.48) 

 

 

 

 

 

 

 

 

 

Figure 1: Global age-specific prevalence estimates for males (left) and females (right) for the year 2017. 
Proportion (prevalence) is on the Y-axis, and age in years on the X-axis. Screenshot from EpiViz tool. 

Figure 1 shows the age-specific variation in prevalence rates, differentiated by sex. When considered as a 
global aggregate, we see that reported male and female prevalence are very similar. This is mostly a 
function of data used for modelling mainly being reported for both sexes. The highest prevalence rates 
are among adolescents and then decline among adults.  

ST-GPR 
After obtaining a global age-sex pattern from DisMod, we utilise a spatiotemporal Gaussian process 
regression (ST-GPR) to generate a complete time series of estimates for each location where there are no 
geographic restrictions. ST-GPR attempts to model non-linear trends utilising a Gaussian process to fit a 
trend. The following model specifications were used: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
+ (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2) + (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 3) 

 

Where Levels 2 and 3 refer to GBD location hierarchies, or random effects for region and location. 
Notably, the covariates for the model were sanitation or proportion of population with access to 
improved toilet types, and safe water or proportion of population with access to improved water sources. 
Improved toilet types and improved water sources are defined by the Joint Monitoring Program. The 
following hyperparameters were used: st-lambda = 0.25, st-omega =2, st-zeta = 0.01, gpr-scale = 15. We 
selected these hyperparameters as they provided more weight to country-level data rather than region-
level data when estimating the prevalence for a given location-year. In other words, these 
hyperparameters ensure that the Gaussian process regressions follow country-specific data rather than 
region-specific data when estimating a time series for a location.   

It is important to note that we did not use all processed GAHI data for the ST-GPR model. We opted to 
run a child-only model because the bulk of our data is among adolescents and there is more granular age 
information that we can leverage during modelling processes. More specifically, any data points that had 
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age bins between 0 and 15 years were assigned to the 5 to 9 age group. We selected all data with age 
bins between 0 and 15 because they fall within the peak in prevalence across all age groups; this is where 
a majority of data are, and this provides sufficient statistical power for our model. This left us with 210 
site-years of global input data for ST-GPR. 

Table 3b. ST-GPR model covariates 

Covariate Exponentiated beta Standard error 

Socio-demographic Index -9.99 2.09 

Safe water -2.56 1.06 

Sanitation 3.95 0.79 

 

 

Figure 2: ST-GPR estimates for Cameroon (0- to 15-year-olds, both sex) for years 1990–2017. Black dots 
represent input data points, with the black lines indicating variance. The green line represents the mean 
GPR estimated values, with uncertainty shown by the green polygon. The blue line indicates the space-
time component of the ST-GPR; the red line indicates the linear regression component derived from 
global data. Transparent black dots represent data from other locations in the GBD region (Western sub-
Saharan Africa).  

Figures 2 displays the time trends as computed by ST-GPR. For the most part, locations looked similar to 
Cameroon, where we see consistent declines in prevalence throughout time. 

Imputations 
The final stage of the overall prevalence modelling process is to impute the remaining age groups by 
borrowing information from the ST-GPR time series for 5- to 9-year-olds and the DisMod global age-sex 
pattern. First, we assign each age group a ratio of how much larger or smaller the prevalence is compared 
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to the prevalence for 5- to 9-year-olds using the DisMod global age-sex pattern. More specifically, the 
following is the computation for each age group: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]𝑡𝑡𝑡𝑡 [𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒]

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝5 𝑡𝑡𝑡𝑡 9
 

We opted not to use the age-sex curves by location or region, because DisMod performed better at 
disaggregating our heterogeneous data at the global level. With a ratio for every age group by sex, we 
multiplied the ratio by the ST-GPR location-year estimates to impute estimates for the remaining age 
groups. 

Health states/sequelae 
Following computations of location-year-age-sex-specific prevalence of ascariasis, we leverage 
information from the 2010 EG data to conduct sequelae splits. The 2010 EG data provided estimates for 
heavy infestation, mild abdominopelvic problems, and asymptomatic ascariasis by location and for 1990, 
2005, and 2010. These three values add up to all cases of ascariasis. Thus, for heavy infestation and mild 
abdominopelvic problems, we computed the proportion of cases that belong to our sequelae of interest 
over all cases of ascariasis. More specifically, the following is the computation by heavy infestation and 
mild abdominopelvic problems: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠

 

This calculation was done for every location, year, and age group available. Because the EG data only had 
four age groups (0-4, 5-9, 10-14, 15+ years), we applied the 15+ age group proportion for all remaining 
age groups. In addition, for 1995 and 2000 we applied the 1990 proportions, and for 2017 we applied the 
2010 proportions. Using these location-year-age-specific proportions, we multiplied the total ascariasis 
estimates to compute heavy infestation and mild abdominopelvic prevalence. To estimate the prevalence 
of asymptomatic ascariasis, prevalence of mild and heavy infestation was subtracted from the overall 
ascariasis prevalence. 

The final step in the modelling process was to estimate the prevalence of severe wasting due to ascariasis 
in age groups 28–364 days and 1–4 years. This was done separately using 1,000 draws of prevalence of 
heavy infestation due to ascariasis and the wasting envelope prevalence. The initial step in determining 
prevalence of severe wasting due to ascariasis was generating 1,000 draws of change in weight-for-height 
z-score per heavy prevalent case from a random normal distribution with mean = 0.493826493 and 
standard deviation = 0.04972834 (calculated from upper and lower bounds of the mean estimate). The 
mean, upper, and lower bounds were based on a published article [2]. The prevalence of severe wasting 
due to ascariasis was then obtained as a function of change in weight-for-height z-score. The following 
are the computations: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −  Φ(Φ−1(wasting) − z score ∗ heavy infestation) 

Where Φ is the standard normal cumulative distribution function and Φ−1 is the inverse standard normal 
cumulative distribution function. 
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Changes from GBD 2016 
Significant changes have been made compared to prior GBD cycles in an effort to build a database of 
ascariasis data points and to continuously update methodologies. The following are changes since prior 
versions of GBD: 

Data – In prior years we used estimates from the 2010 EG data. Here, we transition to utilising a 
comprehensive database of ascariasis data points so we may annually update our inputs to reflect 
up-to-date data.  

Age-sex pattern – Given a substantial amount of heterogeneity in our input data, age-sex curves 
were generated from a DisMod model. 

Gaussian process regressions – To obtain location-year prevalence estimates, we implemented 
ST-GPR methodology consistently across the globe.  

Limitations 
As we attempt to improve the modelling processes for ascariasis, we recognise that there are several 
limitations. A substantial limitation is with regard to our data. While the GAHI database represents a 
comprehensive synthesis of ascariasis data points, numerous data points were excluded due to our 
specific case definition. We opted to only include studies where Kato-Katz was used to identify infected 
individuals, forcing us to drop a large proportion of the GAHI database. Inclusion of these studies may 
provide substantially more information with regard to our age patterns and time trends. Upcoming GBD 
cycles will explore methods for combining data with idiosyncratic diagnostic tools. 

A secondary limitation to our data is that several included studies are not considered to be nationally 
representative, and therefore at a location level, the data are highly heterogeneous (Figure 3). Numerous 
studies within the database were conducted in districts or townships, and in some cases the studies were 
done in known areas where prevalence is high. Upcoming GBD cycles will continue to rigorously vet these 
data points and update the database with literature searches. In addition, exploring the use of 
methodologies, such as model-based geostatistics, that implicitly model the spatial heterogeneity with 
this focal condition, are likely necessary. 

Furthermore, we made a large assumption that the global age-sex distributions were applicable to all 
locations. While we believe that prevalence should peak among adolescents and slowly decline afterward, 
there is likely variation across regions and locations. Given that our data are either among children or all-
age, it is very difficult to build an age trend at granular location levels. Thus, we allowed DisMod to 
disaggregate our heterogeneous data in an effort to provide sensible age-sex curves.   

We believe that more work needs to be done to improve our sequelae split methods. Since the EG data 
do not provide all estimation years and age groups, several assumptions had to be made. Thus, we will 
explore conducting literature searches to provide novel data points for sequelae estimations. Lastly, we 
ought to explore covariate effects in our ST-GPR model. Surprisingly, the sanitation covariate had a 
positive relationship with ascariasis prevalence, suggesting that our covariates may need to be 
reevaluated for future GBD cycles.   
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Figure 3: ST-GPR estimates for Nigeria (0 to 15 year olds, both sex) for years 1990–2017. Coloration and 
symbols are as stated in caption for Figure 2. 

Figure 3 show the time trend for Nigeria as computed by ST-GPR. For some locations, we estimate this 
fluctuating time trend which is a function of the heterogeneity in our input data. As explained above, 
some of these data points are representative of townships in Nigeria, causing a great deal of 
heterogeneity throughout time. 
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3.3.5 Hookworm Disease SDG Capstone Appendix 
 
Flowchart 

 

 
Input data and methodological summary 

Case Definition 
Hookworm disease is a helminthic disease caused by intestinal parasites in the roundworm group, 
Ancylostoma duodenale and Necator americanus. It is one of the three intestinal nematode infections 
(INI), or soil-transmitted helminthiasis (STH), that we model in GBD. Diagnosis is made by examination of 
stool by microscope or PCR, with or without concentration procedures. The ICD-10 codes for hookworm 
disease are B76-B76.9. 

Input data 
Global Atlas of Helminth Infections Data 
Input data for this model were primarily compiled from the Global Atlas of Helminth Infections (GAHI) 
database. The GAHI database collates an exhaustive catalog of surveys and studies conducted by 
scientists that attempt to estimate the burden of STH [1]. Each record in the database contained 
metadata (ie, location, year, age range, sex) of each study sample and the prevalence of hookworm in 
that sample. We excluded data points where the age range of the sample was unknown and retained only 
those surveys where Kato-Katz diagnostics were used. The table below displays the number of site-years 
by geography: 

Table 1a. Site-years for hookworm from the Global Atlas of Helminth Infections data used in GBD 2017 

  Prevalence 

Site-years (total) 312 

Number of countries with data 60 
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Number of GBD regions with data (out of 21 regions) 10 

Number of GBD super-regions with data (out of 7 super-regions) 5 

Expert Group Data 
Since GBD 2010, we have used prevalence data prepared by the GBD expert group (EG) containing mean 
prevalence with confidence intervals, stratified by location, year (1990, 2005, 2010), age group (0-4, 5-9, 
10-14, 15+ years) and intensity of infection (light, medium, heavy, all). In order to move toward updating 
inputs and methods, we altered our use of these data. For some stages of our processes, we retain 
information from previous GBD cycles and the expert group, detailed below.  

Geographic Restrictions 
We conducted a literature review to determine the geographic extent of the disease and classify locations 
based on whether the disease is absent or present in each year. Locations that were geographically 
restricted in any given year did not have estimates made for them. Of note, we did not attempt a 
complete systematic review, since a single high-quality source could offer sufficient evidence of presence. 
Evidence of absence or presence was not available for every location for each year, and so assumptions 
were made for missing years by taking into consideration the epidemiological characteristics of the 
disease.  

If evidence indicated disease presence for two non-consecutive years, we assumed presence for all years 
between the two. If evidence indicated disease absence for two non-consecutive years, we assumed 
absence for all years between the two. If evidence indicated a change in status (ie, from absent to 
present, or present to absent) between two non-consecutive years, then we conducted targeted searches 
to ascertain the relevant year of introduction or elimination for that location. In the cases where presence 
or absence information was missing for the start or end years of our study interval (1990–2017) without 
evidence of any introduction or elimination events within the interval, we applied the status of the first 
and last presence/absence observations, respectively, to all years between the interval bound and the 
observation year. Our search was done in conjunction with the title/abstract screening portion of a 
systematic literature review for prevalence data. The search strings and yield can be viewed in the table 
below for each of the databases queried. 

Table 1b. Geographic Restriction Search Strings 

Database Search String Yield 
PubMed (Ascariasis[Title/Abstract] OR Ascaris[Title/Abstract] OR "A. 

lumbricoides"[Title/Abstract] OR Ascaris[MeSH] OR Trichuris[Title/Abstract] 
OR Trichuriasis[Title/Abstract] OR "Whip Worm"[Title/Abstract] OR "T. 
trichura"[Title/Abstract] OR Trichuris[MeSH] OR Hookworm[Title/Abstract] OR 
"A. duodenale"[Title/Abstract] OR "Ancylostoma duodenale”[Title/Abstract] 
OR ancylostomiasis[Title/Abstract] OR "N. americanus"[Title/Abstract] OR 
“Necator americanus”[Title/Abstract] OR necatoriasis[Title/Abstract] OR 
Ancylostoma [MeSH] OR Necator[MeSH]) AND (prevalence[Title/Abstract] OR 
incidence[Title/Abstract] OR epidemiology[Title/Abstract] OR 
surveillance[Title/Abstract]) NOT(Animals[MeSH] NOT Humans[MeSH]) 

2,376 

Web of 
Science  

(Ascariasis OR Ascaris OR A. lumbricoides OR Trichuris OR Trichuriasis OR 
Whip Worm OR T. trichura OR Hookworm OR A. duodenale OR Ancylostoma 

2,266 
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 duodenale OR anclyostomiasis OR N. americanus OR Necator americanus OR 
necatoriasis) AND TOPIC:(prevalence OR incidence OR epidemiology OR 
surveillance) NOTTOPIC: ((Animals NOT Humans)) 
Timespan: 1980-2016. Indexes: SCI-EXPANDED, SSCI, A&HCI, ESCI. 

SCOPUS TITLE-ABS_KEY (ascariasis OR ascaris OR a. lumbricoides OR trichuris OR 
trichuriasis OR whip worm OR t. trichura OR hookworm OR a. duodenale OR 
ancylostoma duodenale OR anclyostomiasis OR n. americanus OR necator 
americanus OR necatoriasis) AND PUBYEAR>1979 

29 

 

These papers were used to classify location-years for all locations and years present in the literature. We 
only utilised papers that are explicitly concerned with hookworm. Additionally, systematic literature 
reviews, meta-analyses, national health statistics publications and collaborator input were used to classify 
location-years not present in the literature review wherever possible. 

Health states/sequelae 
The table below shows the list of sequelae due to hookworm and the associated disability weights (DW). 
Prevalence of medium infection and heavy infection were mapped to mild abdominopelvic problems and 
heavy infestation of hookworm, respectively. Light infection was not attributed any disability. To inform 
the wasting model, 1,000 draws of severe wasting prevalence among children under 5 years were 
ascertained from GBD 2017 estimates – the methods used to generate estimates of wasting prevalence 
are detailed elsewhere (part of risk factors documentation) [2]. 

Table 2. Sequelae, lay descriptions, and disability weights (DWs) 

Sequela Lay description DW 
Mild abdominopelvic problems  “has some pain in the belly that causes nausea but 

does not interfere with daily activities” 
0.011 (0.005–
0.021) 

Heavy infestation “has cramping pain and a bloated feeling in the 
belly” 

0.027 (0.015–
0.044) 

Severe wasting “is extremely skinny and has no energy” 0.128 (0.082–
0.183) 

Asymptomatic hookworm 
disease 

NA NA 

Mild anaemia “feels slightly tired and weak at times, but this does 
not interfere with normal daily activities” 

0.004 (0.001–
0.008) 

Moderate anaemia “feels moderate fatigue, weakness, and shortness of 
breath after exercise, making daily activities more 
difficult” 

0.052 (0.034–
0.076) 

Severe anaemia “feels very weak, tired and short of breath, and has 
problems with activities that require physical effort 
or deep concentration” 

0.149 (0.101–
0.210) 
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Modelling strategy 
DisMod-MR 2.2 
In the estimation of overall morbidity due to hookworm, we implemented a three-stage modelling 
framework. The first stage of the modelling process was using DisMod-MR to generate a global age-sex 
curve to disaggregate all-age, both-sex prevalence data. DisMod is an integrated meta-regression 
framework that allows for multiple datasets to be used within a singular analysis regardless of age-
binning, sources, and geographies. As a result, a variety of differently aggregated information can be 
evaluated to generate a consensus output. Our final model contained all processed GAHI data as input 
and was informed by two country-level covariates (ie, all risk factors SEV for unsafe water, and all risk 
factors SEV for unsafe sanitation). From this model, the global fits were used. 

Table 3a. DisMod model covariates 

Covariate Type Parameter Exponentiated beta 

SEV unsafe water Country-level Proportion  4.38 (4.14–4.48) 

SEV unsafe sanitation Country-level Proportion 4.44 (4.25–4.48) 

 

 

 

 

 
 
 
 
 
Figure 1: Global age-specific prevalence estimates for males (left) and females (right) for the year 2017. 
Proportion (prevalence) is on the Y-axis, and age in years on the X-axis. Screenshot from EpiViz tool. 

Figure 1 shows the age-specific variation in prevalence rates, differentiated by sex. When considered as a 
global aggregate, we see that reported male and female prevalence are very similar. This is mostly a 
function of data used for modelling mainly being reported for both sexes. Prevalence peaks among young 
adults, followed by a decline and then stabilising during adulthood. These age-sex curves are similar to 
what has been reported in the literature [3, 4]. 

ST-GPR 
After obtaining a global age-sex pattern from DisMod, we utilise a spatiotemporal Gaussian process 
regression (ST-GPR) to generate a complete time series of estimates for each location where there are no 
geographic restrictions. ST-GPR attempts to model non-linear trends utilising a Gaussian process to fit a 
trend. The following model specifications were used: 

149



𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
+ (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2) + (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 3) 

 
Where levels 2 and 3 refer to GBD location hierarchies, or random effects for region and location. 
Notably, the covariates for the model were sanitation or proportion of population with access to 
improved toilet types, and safe water or proportion of population with access to improved water sources. 
Improved toilet types and improved water sources are defined by the Joint Monitoring Programme. The 
following hyperparameters were used: st-lambda = 0.25, st-omega =2, st-zeta = 0.01, gpr-scale = 15. We 
selected these hyperparameters as they provided more weight to country-level data rather than region-
level data when estimating the prevalence for a given location-year. In other words, these 
hyperparameters ensure that the Gaussian process regressions follow country-specific data rather than 
region-specific data when estimating a time series for a location. 

It is important to note that we did not use all processed GAHI data for the ST-GPR model. We opted to 
run an adolescent-only model because the bulk of our data are among children and there is more 
granular age information that we can leverage during modelling processes. More specifically, any data 
points that had age bins between 5 and 20 years were assigned to the 15 to 19 age group. We selected all 
data with age bins between 5 and 20 because this falls right below the peak in prevalence across all age 
groups, this is where a majority of data are, and it provides sufficient statistical power for our model. This 
left us with 199 site-years of global input data for ST-GPR. 

Table 3b. ST-GPR model covariates 

Covariate Exponentiated beta Standard error 

Socio-demographic Index -0.12 1.69 

Safe water -2.89 0.66 

Sanitation -2.40 0.82 
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Figure 2: ST-GPR estimates for Tanzania (5- to 20-year-olds, both sexes) for years 1990–2017. Black dots 
represent input data points, with the black lines indicating variance. The green line represents the mean 
GPR estimated values, with uncertainty shown by the green polygon. The blue line indicates the space-
time component of the ST-GPR; the red line indicates the linear regression component derived from 
global data. Transparent black dots represent data from other locations in the GBD region (Western sub-
Saharan Africa).  

Figures 2 displays the time trends as computed by ST-GPR. For the most part, locations looked similar to 
Tanzania, where we see steady declines in prevalence throughout time. 

Imputation 
The final stage of the overall prevalence modelling process is to impute the remaining age groups by 
borrowing information from the ST-GPR time series for 15- to 19-year-olds and the DisMod global age-sex 
pattern. First, we assign each age group a ratio of how much larger or smaller the prevalence is compared 
to the prevalence for 15- to 19-year-olds using the DisMod global age-sex pattern. More specifically, the 
following is the computation for each age group: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]𝑡𝑡𝑡𝑡 [𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒]

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝15 𝑡𝑡𝑡𝑡 19
 

We opted not to use the age-sex curves by location or region, because DisMod performed better at 
disaggregating our heterogeneous data at the global level. With a ratio for every age group by sex, we 
multiplied the ratio by the ST-GPR location-year estimates to impute estimates for the remaining age 
groups. 

Health states/sequelae 
Following computations of location-year-age-sex-specific prevalence of hookworm, we leverage 
information from the 2010 EG data to conduct sequelae splits. The 2010 EG data provided estimates for 
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heavy infestation, mild abdominopelvic problems, and asymptomatic hookworm by location and for 1990, 
2005, and 2010. These three values add up to all cases of hookworm. Thus, for heavy infestation and mild 
abdominopelvic problems, we computed the proportion of cases that belong to our sequelae of interest 
over all cases of hookworm. More specifically, the following is the computation by heavy infestation and 
mild abdominopelvic problems: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

This calculation was done for every location, year, and age group available. Because the EG data only had 
four age groups (0-4, 5-9, 10-14, 15+ years), we applied the 15+ age group proportion for all remaining 
age groups. In addition, for 1995 and 2000 we applied the 1990 proportions, and for 2017 we applied the 
2010 proportions. Using these location-year-age specific proportions, we multiplied the total hookworm 
estimates to compute heavy infestation and mild abdominopelvic prevalence. To estimate the prevalence 
of asymptomatic hookworm, prevalence of mild and heavy infestation was subtracted from the overall 
hookworm prevalence. 

The final step in the modelling process was to estimate the prevalence of severe wasting due to 
hookworm in age groups 28–364 days and 1–4 years. This was done separately using 1,000 draws of 
prevalence of heavy infestation due to hookworm and the wasting envelope prevalence. The initial step in 
determining prevalence of severe wasting due to hookworm was generating 1,000 draws of change in 
weight-for-height z-score per heavy prevalent case from a random normal distribution with mean = 
0.493826493 and standard deviation = 0.04972834 (calculated from upper and lower bounds of the 
mean estimate). The mean, upper, and lower bounds were based on a published article [2]. The 
prevalence of severe wasting due to hookworm was then obtained as a function of change in weight-for-
height z-score. The following are the computations: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 −  Φ(Φ−1(wasting) − z score ∗ heavy infestation) 

Where Φ is the standard normal cumulative distribution function and Φ−1 is the inverse standard normal 
cumulative distribution function. Finally, the burden of anaemia due to hookworm disease was estimated 
separately (see anaemia documentation for details). 

 

Changes from GBD 2016 
Significant changes have been made compared to prior GBD cycles in an effort to build a database of 
hookworm data points and to continuously update methodologies. The following changes have been 
made since prior versions of GBD: 

Data – In prior years we used estimates from the 2010 EG data. Here, we transition to utilising a 
comprehensive database of hookworm data points so we may annually update our inputs to 
reflect up-to-date data.  

Age-sex pattern – Given a substantial amount of heterogeneity in our input data, age-sex curves 
were generated from a DisMod model. 

Gaussian process regression – To obtain location-year prevalence estimates, we implemented ST-
GPR methodology consistently across the globe.  
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Limitations  
As we attempt to improve the modelling processes for hookworm, we recognise that there are several 
limitations. A substantial limitation is with regard to our data. While the GAHI database represents a 
comprehensive synthesis of hookworm data points, numerous data points were excluded due to our 
specific case definition. We opted to only include studies where Kato-Katz was used to identify infected 
individuals, forcing us to drop a large proportion of the GAHI database. Inclusion of these studies may 
provide substantially more information with regard to our age patterns and time trends. Upcoming GBD 
cycles will explore methods for combining data with idiosyncratic diagnostic tools. 

A secondary limitation to our data is that several included studies are not considered to be nationally 
representative, and therefore, at a location level, the data are highly heterogeneous (Figure 3). Numerous 
studies within the database were conducted in districts or townships, and in some cases the studies were 
done in known areas where prevalence is high. Upcoming GBD cycles will continue to rigorously vet these 
data points and update the database with literature searches. In addition, exploring the use of 
methodologies, such as model-based geostatistics, that implicitly model the spatial heterogeneity with 
this focal condition, are likely necessary. 

Furthermore, we made a large assumption that the global age-sex distributions were applicable to all 
locations. While we believe that prevalence should peak among young adults and slowly decline 
afterward, there is likely variation across regions and locations. Given that our data are either among 
adolescents or all-age, it is very difficult to build an age trend at granular location levels. Thus, we allowed 
DisMod to disaggregate our heterogeneous data in an effort to provide sensible age-sex curves.   

Lastly, we believe that more work needs to be done to improve our sequelae split methods. Since the EG 
data do not provide all estimation years and age groups, several assumptions had to be made. Thus, we 
will explore conducting literature searches to provide novel data points for sequelae estimations. 

 

Figure 3: ST-GPR estimates for Nigeria (5- to 20-year-olds, both sexes) for years 1990–2017. Colouration 
and symbols are as stated in caption for Figure 2. 
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Figure 3 show the time trend for Nigeria as computed by ST-GPR. For some locations, we estimate this 
fluctuating time trend, which is a function of the heterogeneity in our input data. As explained above, 
some of these data points are representative of townships in Nigeria causing a great deal of 
heterogeneity throughout time. 
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3.3.5 Cutaneous & Mucocutaneous Leishmaniasis SDG Capstone Appendix 
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Description of general methodology 
 
The non-fatal estimation process for cutaneous leishmaniasis is built from incident case notification data 
representative of the GBD geographic location, which are adjusted for underreporting. The upscaled all-
age, both sex, case counts are modelled using spatiotemporal Gaussian process regression (ST-GPR) in 
order to impute for missing location-year combinations as well as to account for further biases and 
inaccuracies in reporting. Datasets that disaggregate CL cases by age and sex are modelled using DisMod 
to produce a global age-sex split which is applied to the all-age, both-sex envelope estimates resulting 
from ST-GPR. These incidence estimates are used to derive prevalence measures, as well as compute the 
resulting years lived with disability values. 
 

Input Data – Case Notification time series 
Current estimation for the all-age, both-sex, incidence envelope is based upon location-representative 
information rather than site-specific epidemiological measures due to the absence of global foci maps 
allowing for upscaling of geographically precise information. The primary data resource therefore is the 
case notification time-series reported by National Control Programs and Ministries of Health to the World 
Health Organization. This is supplemented by systematic literature review (last updated for GBD 2015) to 
identify alternate sources of data for years missing information. For countries with subnational estimates, 
in-country collaborators have compiled information for respective programs, or identified key resources, 
again supplemented by literature reviews. Where possible, information disaggregating location-level 
statistics by age and sex were extracted 
 

 Incidence 
Site-years (total) 848 
Number of countries with data 56 
Number of GBD regions with data (out of 21 
regions) 

13 
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Number of GBD super-regions with data (out of 7 
super-regions) 

7 

Table 1: Summary statistics for data used in cutaneous leishmaniasis estimation. 
 

Method – Geographic restrictions 
There are strong climatic and biogeographic constraints on the geographic distribution of CL resulting in a 
focal, rather than cosmopolitan global distribution. As a result, it is necessary to identify locations 
burdened by the disease through space and time as distinct from countries where CL is absent. Tags were 
assigned to each location-year based upon the outcome of a search of IHME databases, as well as 
location-specific searches of PubMed. Each location-year is tagged as follows: 
- Present – where a specific citation of either an autochthonous laboratory-confirmed case (ie, a case 

with PCR, serological, or parasitological diagnosis), reported case (ie, a case noted as CL, but with no 
supporting diagnostic), or supporting evidence (ie, confirmed infection in animal reservoirs or sandfly 
vectors) 

- Protocol Present – for a given location-year, where no specific citation is used, but is present for 
another year in the same location, it is assumed that CL is present given that eradication of the 
pathogen has not been achieved 

- Absent – where PubMed location-specific searches returned zero relevant results, in locations 
scoring -25 or lower as evaluated by Pigott and colleagues (2014) [the threshold for “absence” in that 
study], locations were tagged as Absent 

- Protocol Absent – as with Absent, locations with zero relevant PubMed results, but with greater than 
-25 as evaluated by Pigott and colleagues (2014), were tagged as Protocol Absent 

 

 
Figure 1: Cutaneous Leishmaniasis geographic restrictions for the year 2010. GBD locations tagged as 
present are coloured in red, dark red represents protocol presence, dark blue represents protocol 
absence, and absence is represented by light blue. Locations missing tags are presented in grey. 
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Figure 2: Cutaneous Leishmaniasis geographic restrictions for Mexican subnationals. Locations tagged as 
present are coloured in red, dark red represents protocol presence, and dark blue represents protocol 
absence. 
 
Full time series of maps and tables, with relevant GHDx NIDs are available upon request from 
gbdsec@uw.edu. 
 
 

Method – ST-GPR 
Using existing IHME tools, the summarised values were modelled using ST-GPR to produce a complete 
time series of estimates for each location-year tagged “Present” or “Protocol Present”. In short, ST-GPR 
attempts to model non-linear trends utilizing a Gaussian process to fit a trend, rather than a definitive 
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functional form. Case count data were translated into estimates of true case counts by using 
underreporting scalars as identified by Alvar et al. (2012). 
 

Method – DisMod 
DisMod was used to generate an age-sex curve to disaggregate all-age, both-sex, incidence data. DisMod 
is an integrated meta-regression framework that allows for multiple datasets to be integrated into a 
singular analysis regardless of age-binning, sources, and geographies. As a consequence, a variety of 
differently aggregated information can be evaluated to generate a consensus output. From this model, 
the global fit was used. 
 

Method – YLD estimation (incorporating duration and disability weighting) / COMO 
Following standard GBD estimation protocols, incidence estimates were used to calculate disease 
prevalence (by multiplication with duration), disaggregated by disease sequelae. One health state is 
assigned to Cutaneous Leishmaniasis, [Table 2]. Duration value of initial acute infection was set to six 
months (Reithinger et al. 2007). Prevalence of long-term sequelae was based upon the proportion of 
cases that would result in facial scarring. The average proportion of sores that occurred on the face was 
calculated based upon a sample-weighted average of the proportion from four studies conducted in 
North Africa/Middle East. This proportion was 0.476. Of these people, only those who did not have 
appropriate access to health care were assigned long-term sequelae, estimated via the Healthcare Access 
and Quality Index. CL incidence, multiplied by proportion of people with facial sores, times the proportion 
of people without adequate health care access in each location-year, was used to obtain incidence of 
people with long-term sequelae, with cohorts streamed through time. 
 

Sequela Health state lay 
description 

Disability weight Duration 

Cutaneous and 
mucocutaneous 
leishmaniasis 

“has a slight, visible 
physical deformity that 
others notice, which 
causes some worry and 
discomfort” 

0.011 
(0.005–0.021) 

6 months 
(46.7% * HAQ Index) 
Lifelong 

Table 2: Sequelae and associated metadata. For the sequelae used in GBD 2017, the lay descriptor health 
state, disability weight, and duration are listed. 
 
Central processing is used to generate the final estimates, including co-morbidity simulations. 
 

Changes from GBD 2016 
There were no substantive changes from the GBD 2016 methodology 
 

Limitations 
As with any modelling process, a number of limitations are known, which will be the focus of additional 
effort in upcoming GBD cycles and engagement with collaborators. Given the focus on location-
representative estimates, the existing model is focused on national case counts. This excludes a large 
resource of published literature and grey literature focused on site-specific surveillance or surveys. While 
some pathogens have integrated subnational approaches as a building block for national estimates (eg, 
schistosomiasis) this has yet to be implemented for cutaneous leishmaniasis. Regardless of contribution 
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to the global incidence model, these data can be used to inform age-sex splits, as well as a variety of 
other key parameters, particularly duration parameters, which are currently lacking uncertainty. 
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3.3.5 Visceral Leishmaniasis SDG Capstone Appendix  
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Visceral leishmaniasis (VL) is the most serious manifestation of disease caused by the Leishmania parasite, 
transmitted through the bite of phlebotomine sandflies. Those infected typically present with fever, 
weight loss, anaemia, leukopenia, thrombocytopenia, and enlargement of the spleen and liver. If left 
untreated, it can be fatal. Transmission varies by geographic region, with a variety of reservoir hosts 
implicated, and different vector species associated, maintaining both zoonotic and anthroponotic 
transmission cycles. The ICD9 code related to visceral leishmaniasis is 085.0, and the ICD10 code is B55.0. 
 
Description of general methodology 
 
The fatal estimation process for visceral leishmaniasis is built from incident case notification data 
representative of the GBD geographic location, which is adjusted for underreporting. The upscaled all-
age, both-sex case counts are modelled using spatiotemporal Gaussian process regression (ST-GPR) in 
order to impute for missing location-year combinations as well as to account for further biases and 
inaccuracies in reporting. Datasets that disaggregate VL cases by age and sex are modelled using DisMod 
to produce a global age-sex split which is applied to the all-age, both-sex envelope estimates resulting 
from ST-GPR. The mean incidence estimates are compared with estimated death counts to generate a 
case-fatality rate model that is subsequently used to estimate deaths for each age, sex, location, year. 
 
Input Data – Case Notification time series 
Current estimation for the all-age, both-sex incidence envelope is based upon location-representative 
information rather than site-specific epidemiological measures due to the absence of global foci maps 
allowing for upscaling of geographically precise information. The primary data resource therefore is the 
case notification time-series reported by National Control Programs and Ministries of Health to the World 
Health Organization. This is supplemented by systematic literature review (last updated for GBD 2015) to 
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identify alternate sources of data for years missing information. For countries with subnational estimates, 
in-country collaborators have compiled information for respective programs, or identified key resources. 
Notifications from 1,151 location-years were available. 
 
Input Data – Underreporting assessments 
It is recognised that case notification series record only a subset of the true cases present. A review was 
undertaken to identify articles that compared reported cases with alternate measures to estimate the 
degree of underreporting. The following search strings were used: ‘leish* AND under*’; ‘active passive 
leish*’. Inclusion criteria were broad to maximise spatiotemporal coverage in potential estimates – any 
report that compared reported statistics with some notion of “truth” (whether capture-recapture, active 
surveillance, etc.) were extracted. Values for both cutaneous and visceral  
leishmaniasis were included. For GBD 2017, 12 articles were included, summarised in Table 1. 
 

Citation GBD 
location 

Time 
period 

Pathogen Method synopsis Proportion 
of “true” 
cases 
reported 

Copeland et al., 1990 
“Comparison of active 
and passive case 
detection of cutaneous 
leishmaniasis in 
Guatemala” (Copeland, 
Arana, and Navin 1990) 

Guatemala 1990 CL Comparison of Ministry 
of Health data with cross-
sectional population-
based survey to inform 
estimated number of 
cases 

64/2574 

Yadon et al. 2001 
“Assessment of 
Leishmaniasis 
notification system in 
Santiago del Estero, 
Argentina, 1990-1993” 
(Yadón et al. 2001) 

Argentina 1990–
1993 

CL Capture-recapture 
methods were used to 
evaluate four reporting 
sources. 

94/210 

Sesma et al. 1997 
“Leishmaniasis in 
Navarra: a review of 
activities” (Sesma and 
Barricarte 1997) 

Spain 1990–
1997 

CL, VL Comparison of active 
searching within the 
region with reporting via 
Epidemiological 
Surveillance System 

8/21 

Maia-Elkhoury et al. 
2007 “Analysis of 
visceral leishmaniasis 
reports by the capture-
recapture method” 
(Maia-Elkhoury et al. 
2007) 

Brazil 2002–
2003 

VL Comparison of three 
notification systems for 
completeness 

5896/10691 

Singh et al. 2006 
“Serious underreporting 
of visceral leishmaniasis 
through passive case 

Bihar, India 2003 VL Comparison of actively 
detected cases (identified 
via household surveys) 
and governmental health 

8/65 
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reporting in Bihar, 
India” (S. P. Singh et al. 
2006) 

system records. Estimate 
is among study 
population 

Singh et al. 2006 
“Serious underreporting 
of visceral leishmaniasis 
through passive case 
reporting in Bihar, 
India” (S. P. Singh et al. 
2006) 

Bihar, India 2003 VL Comparison of actively 
detected cases (identified 
via household surveys) 
and governmental health 
system records. 

109/876 

Gkolfinopoulou et al. 
2013 “Epidemiology of 
human leishmaniasis in 
Greece, 1981-2011” 
(Gkolfinopoulou et al. 
2013) 

Greece 2004–
2009 

VL Comparing number of 
cases identified at 
national reference 
laboratory with 
mandatory notification 
system. 

260/361 

Singh et al. 2010 
“Estimation of under-
reporting of Visceral 
Leishmaniasis cases in 
Bihar India” (V. P. Singh 
et al. 2010) 

Bihar, India 2006 VL Comparison of actual 
reported number of 
cases with estimates age-
sex stratified incidence 
proportions for a cohort 
of 31,324 persons 

34/177 

Hirve et al. 2010 
“Effectiveness and 
feasibility of active and 
passive case detection 
in the Visceral 
Leishmaniasis 
Elimination Initiative in 
India, Bangladesh, and 
Nepal” (Hirve et al. 
2010) 

Bihar, India 
Nepal 
Bangladesh 

2008 VL Comparing active case 
detection evaluations 
(conducting via house-to-
house screening) with 
passive case detection 
systems 

111/130 
119/127 
18/25 
20/32 

Faraj et al. 2016 
“Effectiveness and cost 
of insecticide-treated 
bed nets and indoor 
residual spraying for the 
control of cutaneous 
leishmaniasis: A cluster-
randomized control trial 
in Morocco” (Faraj et al. 
2016) 

Morocco 2008–
2013 

CL Comparison of incidence 
of new CL cases by both 
active and passive case 
detection 

409/670 

Das et al. 2014 “Active 
and passive case 
detection strategies for 
the control of 
leishmaniasis in 

Bangladesh 2010–
2011 

VL Comparing two districts’ 
estimates [identified in 
the paper as being 
directly comparable] of 
cases, one via active case 

756/1087 
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Bangladesh” (Das et al. 
2014) 
 

detection, the other via 
passive case detection. 
Active case detection was 
via community education 
and outreach workers 
targeting households 

Rahman et al. 2015 
“Performance of Kala-
azar surveillance in 
Gaffargaon subdistrict 
of Mymensingh, 
Bangladesh” (Rahman 
et al. 2015) 

Bangladesh 2010–
2011 

VL Comparison of cases 
reported to the local 
health complex versus 
active search for kala-
azar cases 

29/58 

Eid et al. 2017 
“Assessment of a 
Leishmaniasis reporting 
system in tropical 
Bolivia using the 
capture-recapture 
method” (Eid et al. 
2017) 

Bolivia 2013–
2014 

CL Active surveillance during 
medical campaigns were 
compared to registered 
cases reported by the 
National Program of 
Leishmaniasis Control 

23/86.4 

Table 1: Metadata for underreporting scalars used in GBD 2017. For each record, a citation, GBD location 
of relevance, year, pathogen, brief summary of methods, and output values used in modelling are listed. 

 

Input data – age/sex-split data 
Where possible, information disaggregating location-level statistics by age and sex were extracted. 
 

 Incidence 
Site-years (total) 1519 
Number of countries with data 70 
Number of GBD regions with data (out of 21 regions)* 14 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 
Table 2: Summary statistics for data used to inform age/sex split modelling. *It should be noted that not 
all GBD regions have leishmaniasis-endemic countries within them. 
 
Method – geographic restrictions 
There are strong climatic and biogeographic constraints on the geographic distribution of VL resulting in a 
focal rather than cosmopolitan global distribution. As a result, it is necessary to identify locations 
burdened by the disease through space and time as distinct from countries were VL is absent. Tags were 
assigned to each location-year based upon the outcome of a search of IHME databases, as well as 
location-specific searches of PubMed. Each location-year is tagged as follows: 
- Present – where a specific citation of either an autochthonous laboratory-confirmed case (ie, a case 

with PCR, serological, or parasitological diagnosis), reported case (ie, a case noted as VL, but with no 
supporting diagnostic), or supporting evidence (ie, confirmed infection in animal reservoirs or sandfly 
vectors) 
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- Protocol Present – for a given location-year, where no specific citation is used, but is present for 
another year in the same location, it is assumed that VL is present given that eradication of the 
pathogen has not been achieved 

- Absent – where PubMed location-specific searches returned zero relevant results, in locations 
scoring -25 or lower as evaluated by Pigott et al. (2014) [the threshold for “absence” in that study 
(Pigott et al. 2014)], locations were tagged as Absent 

- Protocol Absent – as with Absent, locations with zero relevant PubMed results, but with greater than 
-25 as evaluated by Pigott et al. (2014), were tagged as Protocol Absent (Pigott et al. 2014) 

 

 
Figure 1: Visceral Leishmaniasis geographic restrictions for the year 2013. GBD locations tagged as 
present are coloured in red, yellow represents protocol presence, dark blue represents protocol absence, 
and absence is represented by light blue. Locations missing tags are presented in grey. 
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Figure 2: Visceral Leishmaniasis geographic restrictions for Indian subnationals. Locations tagged as 
present are coloured in red, yellow represents protocol presence, and dark blue represents protocol 
absence. 
 
Full time series of maps and tables, with relevant GHDx NIDs, are available upon request from 
gbdsec@uw.edu. 
 
Method – underreporting modelling and scaled case counts 
Underreporting scalars were modelled as a generalised linear model estimating the proportion of true 
cases captured by reporting systems: a value of 1 therefore represents all actual cases of leishmaniasis 
being reported through notification systems. The specific models is as follows: 
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𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
"true" cases

= 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

 
To account for potential biases inherently present based upon differing survey methods or location-
specific confounders, 1,000 models were run, with each model randomly dropping all data from a specific 
location, and then one additional data point from the remaining dataset. Similarly, for estimates that 
spanned multiple years, for each model one of the years within the range of possible years was randomly 
assigned. 
To generate scaled case counts, for each of the 1,000 models a random number was generated, using a 
normal distribution with mean being that of the mean estimated scalar bounded by the upper and lower 
confidence interval. With these 1,000 scalars, 1,000 scaled case counts were calculated and summarised 
for modelling within ST-GPR. 
 
Method – ST-GPR 
Using existing IHME tools, the summarised values were modelled using ST-GPR to produce a complete 
time series of estimates for each location-year tagged “Present” or “Protocol Present”. In short, ST-GPR 
attempts to model non-linear trends utilising a Gaussian process to fit a trend, rather than a definitive 
functional form. The following model specifications were used: 
 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =   𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1)

+ (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 2) + (1|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 3) 
 
where levels 1, 2, and 3, referring to GBD location hierarchies, treated as random effects. The following 
hyperparameters were used: st-lambda = 0.4, st-omega = 1, st-zeta = 0.01, gpr-scale = 10. 
 
Method – DisMod 
DisMod was used to generate an age-sex curve to disaggregate all-age, both-sex incidence data. DisMod 
is an integrated meta-regression framework that allows for multiple datasets to be integrated into a 
singular analysis regardless of age-binning, sources, and geographies. As a consequence, a variety of 
differently aggregated information can be evaluated to generate a consensus output. From this model, 
the global fit was used. 
 

Method – YLD estimation (incorporating duration and disability weighting) / COMO 
Following standard GBD estimation protocols, incidence estimates were used to calculate disease 
prevalence (by multiplication with duration), disaggregated by disease sequelae. In total, two health 
states are assigned to visceral leishmaniasis, “moderate visceral leishmaniasis” and “severe visceral 
leishmaniasis” [Table 3]. Duration values were taken from Murray et al. (2005). 
 

Sequela Health state lay 
description 

Disability weight Duration 

Moderate visceral 
leishmaniasis 

Infectious disease, acute 
episode, moderate 
“has a fever and aches, 
and feels weak, which 
causes some difficulty in 
daily activities” 

0.051 (0.032–0.074) 2.5 months 
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Severe visceral 
leishmaniasis 

Infectious disease, acute 
episode, severe 
“has a high fever and 
pain, and feels very 
weak, which causes 
great difficulty with daily 
activities” 

0.133 (0.088–0.19) 15 days 
 

Table 3: Sequelae and associated metadata. For the sequelae used in GBD 2017, the lay descriptor health 
state, disability weight, and duration are listed. 
 
Central processing is used to generate the final estimates, including co-morbidity simulations. 
 
Changes from GBD 2016 
A number of changes to the methodology were implemented for GBD 2017: 
 Geographic restrictions – to improve transparency and tractability of geographic restrictions, 
maps of restricted locations and years are available, with clear designation of data (or assumptions) used 
to inform a GBD location-year’s status. As a result of updating, the status of some GBD locations has 
changed in the light of new evidence (eg, Angola). While we explore how best to host this information, it 
is currently available upon request to gbdsec@uw.edu. 
 All-age, both-sex incidence envelope – new data were acquired and an ST-GPR methodology 
implemented consistently across the globe. Relevant covariates were updated from GBD 2016. One 
important change was the removal of the “High endemicity” covariate, which constrained predictions, 
particularly in low SDI countries in Africa, since its construction and subsequent use in models are not 
independent of each other.  
 Age-sex breakdown – age-sex curves were taken from a DisMod model using an updated dataset 
of age-sex specific information 
 Underreporting model – considerable changes were undertaken from GBD 2016 for 
underreporting. Rather than using a single scalar, taken from expert opinion (Alvar et al. 2012), applied 
across the entire time series, a model was developed, parameterised by real data, allowing for 
spatiotemporal variation in estimates. These variable scalars were then applied to their relevant location-
year case count values. 
 
Results specific to visceral leishmaniasis model 
The aim here is to provide insights in some of the sub-models that are involved in the VL estimation 
process that are not published as part of the GBD capstones or readily available via the supplemental 
materials. For further questions, please direct toward gbdsec@uw.edu. 
 
Underreporting 
 
Coefficients 
Pathogen: 0.6371 (-0.0456 to 1.5868) (where pathogen order is CL, VL) 
Year: 0.1350 (0.0714–0.2058) 
SDI: 4.6230 (2.0290–9.3287) 
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Figure 3: Example of VL underreporting model for Bihar, India. Plot showing each of the 1,000 iterations 
of the underreporting model run, coloured by the location that has been held out [colours coded by their 
GBD location id: 161 = Bangladesh, 128 = Guatemala, 148 = Morocco, 4844 = Bihar, India, 82 = Greece, 97 
= Argentina, 92 = Spain, 164 = Nepal, 121 = Bolivia, 135 = Brazil]. The black vertical lines represent data 
points (with standard errors) for Bihar as listed in Table 1, and the green dashed line is the upper and 
lower bound of the underreporting factor recorded by Alvar et al. (2012), which was applied across all 
time in GBD 2016. 
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Age- and sex-specific trends in incidence rate 
 

 
Figure 4: Global age-specific incidence estimates for males (left) and females (right) for the year 2010. 
Incidence is on the Y-axis (rate per total population), and age in years on the X-axis. Screenshot from 
EpiViz. 
 
Figure 4 shows the age-specific variation in incidence rates, differentiated by sex. When considered as a 
global aggregate, we see that reported male incident rates are approximately double those of females, 
with highest rates observed in younger age groupings. In adults, levels are comparatively flat, but there is 
an uptick in older age groups. 
 
ST-GPR 
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Figure 5: ST-GPR estimates for India (all-age, both sex) for years 1990–2017. Black dots represent input 
data points (post processing for underreporting) with the black lines indicating variance. The green line 
represents the mean GPR estimated value, with uncertainty shown by the green polygon. The blue line 
indicates the space-time component of the ST-GPR; the red indicates the linear regression component 
derived off of global data. Transparent black dots represent data from other locations in the GBD region 
CFR. 

 
Figure 6: ST-GPR estimates for India (all-age, both sex) for years 2009–2017. Colouration and symbols are 
as stated in caption for Figure 5. 

  
Figure 7: ST-GPR estimates for France (all-age, both sex) for years 1990–2017. Colouration and symbols 
are as stated in caption for Figure 5. 
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Figure 8: ST-GPR estimates for Brazil (all-age, both sex) for years 1990–2017. Colouration and symbols are 
as stated in caption for Figure 5. 

 
Figure 9: ST-GPR estimates for South Sudan (all-age, both sex) for years 1990–2017. Colouration and 
symbols are as stated in caption for Figure 5. 
 
Limitations 
As with any modelling process, a number of limitations are known, which will be the focus of additional 
effort in upcoming GBD cycles and engagement with collaborators. Given the focus on location-
representative estimates, the existing model is based upon national case counts. This excludes a large 
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resource of published literature and grey literature focused on site-specific surveillance or surveys. While 
some pathogens have integrated subnational approaches as a building block for national estimates (eg, 
schistosomiasis), this is yet to be implemented for visceral leishmaniasis. Regardless of contribution to the 
global incidence model, these data can be used to inform age-sex splits, as well as a variety of other key 
parameters, particularly duration parameters, which are currently lacking uncertainty and support from a 
full literature review.  
 
The removal of the “high endemicity” dataset in the ST-GPR framework led to some sub-Saharan African 
nations having considerably higher burden estimates than prior cycles. For many nations, this is reflective 
of the sporadic reporting of cases in these countries (eg, in Angola and the Democratic Republic of 
Congo), and a consensus on pathogen presence is highly uncertain. It was important to remove this 
covariate, however, as it was a prior imposed on the model, a model designed to evaluate this status that 
leveraged the same data that were in the model itself. This high degree of dependence we aimed to 
eliminate. In the next cycle of GBD, there is a need to identify an independent resource to aid in 
quantifying the population-at-risk, which the high endemicity layer was designed to approximate, as well 
as engaging with self-identified pathogen-specific and country-specific collaborators to re-evaluate the 
presence/protocol presence status assigned to these nations. 
 
Similarly, existing death data are limited in geographic distribution (due to primarily coming from 
countries with robust vital registration systems), and could lack in external validity when extrapolated to 
other nations. While region-level random effects help account for some of this (for instance, mitigating 
some of the higher case fatality rates in immunocompromised individuals in the high-income region in 
GBD), this doesn’t eliminate all possible confounding, and furthermore, does not negate the fact that 
most of the high-incidence countries do not report a full time series of deaths. Further cycles should 
explicitly consider the reported case fatality rates in the literature, many of which come from those VR 
data-poor regions. 
 
Age-sex patterns are highly reflective of the countries from which data are obtained. Importantly, there is 
a large skew in information coming from Brazil. This information has potential biases due to the nature of 
the data inputs (notification and hospital data) and the corresponding age-sex variation in health-seeking 
behaviours. Yet again, consulting some of the detailed household surveys that do exist will increase 
geographic coverage of these estimates, and provide an important independent comparator to 
determine whether these disparities are genuine, or an artefact of the reporting systems consulted in this 
current model. 
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3.3.5 Lymphatic Filariasis SDG Appendix

 

Input Data and Methodological Summary  

Case Definition  

Lymphatic filariasis (LF) is a neglected tropical disease spread in which threadlike nematodes invade the 
lymphatic system. The worms responsible – Wuchereria bancrofti, Brugia malayi, and Brugia timori – 
are spread from human to human via mosquitoes. The most prominent clinical manifestations of LF are 
lymphedema (a swelling of the legs, also known in its more extreme manifestation as elephantiasis) 
and hydrocele (a collection of fluid in the sac around the testicles).  

Input data  

A systematic review of literature for GBD 2016 in the PubMed database was done on October 14, 2016, 
for prevalence and incidence data using the search (Lymphatic filariasis AND prevalence) OR (Lymphatic 
filariasis AND (prevalence OR incidence OR "mass drug administration" OR MDA OR coverage)) OR 
(Lymphedema, hydrocele) OR (Transmission Assessment Survey (TAS)) OR (Lymphatic filariasis AND 
mapping).  
 
Population at risk and MDA coverage data come from the WHO PCT Databank [1]. 
 
Modelling strategy  

Data on prevalence of microfilaria is modelled using Dismod-MR 2.1. Due to the focal nature of 
lymphatic filariasis, we make the assumption that data collected are from endemic locations unless 
specifically specified in literature or survey methods. If the data are nationally representative, we adjust 
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the data points by multiplying by the inverse of the proportion of the population at risk. Due to the fact 
that data is collected in endemic locations or we adjust it so that it is within the population at risk, we 
then scaled the DisMod-MR 2.1 estimates according to at-risk population in order to attain nationally 
representative values. We developed a new MDA location-level covariate that is used in the DisMod 
model based off WHO PCT Databank data, informing prevalence estimates.   

For lymphedema and hydrocele, we incorporate survey data from the Global LF Atlas in a non-linear 
error-in-variables regression that determines the prevalence of lymphedema and hydrocele as 
functions of microfilaria prevalence, which is then applied to the total microfilaria DisMod model in 
order to attain an envelope of cases by location-year. Separately, all available prevalence data for these 
conditions is modeled in DisMod in order to determine an age-sex pattern.  

In the estimation of lymphedema and hydrocele prevalence, we perform the same population at-risk 
correction that is done on microfilaria prevalence. For hydrocele prevalence after treatment, we take 
the value before MDA rollout in 2000 and reduce that by the same treatment efficacy function 
described for microfilaria prevalence, using dosage-reduction data specific to hydrocele along with the 
location-year specific MDA coverage. For lymphedema, we assume no new cases appear among 
treated individuals. As such, we reduce lymphedema prevalence in post-treatment years in accordance 
with MDA coverage.  

Sequela  Data points  Regions   Countries   Subnational units  

Prevalence of detectable 
microfilaria  1,552  

 
10  

 
40  28  

Lymphedema due to lymphatic 
filariasis  511  

 
10  

 
25  15  

Hydrocele due to lymphatic  
filariasis  265  

 
8  

 
22  12  

  
Changes from GBD 2016 to GBD 2017 
We conducted a new literature review, and utilized data from recent years and the MDA covariate to 
predict the time trend rather than last year’s non-linear regression to estimate the reduction of 
microfilaria as a function of treatments per person. Additionally, we used age-specific data extracted 
from communities that were pre-MDA and post-MDA to develop age-trends specific to MDA status. We 
then split out all-age data according to MDA status to provide more granular data to the unadjusted 
prevalence model. 
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3.3.5 Leprosy SDG Capstone Appendix 

 
Input Data and Methodological Summary 
Case definition 
Leprosy is a chronic bacterial infection caused by Mycobacterium leprae, primarily affecting the nervous 
system, skin, respiratory tract, and eyes. Transmission is facilitated through contact with fluid from the 
nose and mouth of an infected individual. The ICD-10 code for leprosy is A30.9.  

Input data  
To model non-fatal outcomes due to leprosy, WHO Weekly Epidemiological Record (WER) case 
notification data were used from 1987 to 2016 to capture incident cases of leprosy. Stage-specific 
incidence data for grade 1 and grade 2 leprosy that are used to define age-sex patterns came from Brazil 
case notification data.  

Table of data counts for leprosy incidence data 

  Incidence 
Site-years (total) 1,374 
Number of countries with data 147 
Number of GBD regions with data (out of 21 regions) 21 
Number of GBD super-regions with data (out of 7 super-
regions) 7 
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Table of data counts for leprosy grade inputs – grade 1 

  Prevalence 
Site-years (total) 12 
Number of countries with data 1 
Number of GBD regions with data (out of 21 regions) 1 
Number of GBD super-regions with data (out of 7 super-regions) 1 

 

Table of data counts for leprosy grade inputs – grade 2 

  Prevalence 
Site-years (total) 710 
Number of countries with data 121 
Number of GBD regions with data (out of 21 regions) 17 
Number of GBD super-regions with data (out of 7 super-
regions) 6 

 

Modelling strategy 
We used a multi-step process for the disease modelling of leprosy. In the first step, we ran a single-
parameter model using DisMod-MR 2.1 to estimate the leprosy incidence age pattern by age, sex, year, 
and country. Then, we scaled the incidence outputs to the WHO WER cases, and used the ordinary 
differential equations (ODE) solver to calculate prevalence from the scaled DisMod-MR 2.0 incidence 
outputs.  

Severity data were prepared by running a generalised ordered logistic regression using Brazil case 
notification data to get the relationship between leprosy incidence and grade 1 and grade 2 incidence by 
age and sex. We then used this relationship to split the parent DisMod-MR 2.1 model, and again scaled to 
WHO WER severity-specific cases. For disfigurement grade 1, we apply a duration of six months to get 
prevalence estimates. For disfigurement grade 2, we again use the ODE solver to get prevalence 
estimates.  

Model evaluation was done by separately assessing the fit of the parent DisMod model and checking the 
final estimates produced after age-sex splits. Plots of time trends of prevalence across locations and age 
were used to evaluate the results. In addition, maps of the global distribution of leprosy prevalence and 
prevalence of sequelae due to leprosy were also assessed across time. 

Changes from GBD 2016 to GBD 2017 
We extracted WHO WER data from 2013 to 2016 to update prevalence and incidence estimates. 
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3.3.5 Onchocerciasis SDG Capstone Appendix 
Flowchart 
 

 
 
Input data & methodological summary 
Case definition 
Onchocerciasis, also known as river blindness, is a parasitic disease caused by Onchocerca volvulus. It is 
transmitted via the bite of one of several species of Similium blackflies that have historically bred in fast-
moving freshwater rivers and tributaries throughout sub-Saharan Africa, Central America, and South 
America. Diagnosis can be made by skin snip biopsy to identify larvae, surgical removal of nodules and 
exam for adult worms, slit lamp exam of anterior part of the eye where larvae or lesions caused by them 
are visible, and antibody tests (mostly useful to visitors to areas with parasites). The ICD-10 code for 
onchocerciasis is B73. 

Input data 
Model inputs 

Prevalence data prepared by the GBD 2010 expert group (EG) was used for modelling the nonfatal 
outcomes resulting from onchocerciasis in Africa. This included 1,000 draws of infection and morbidity 
(visual impairment, blindness, and skin conditions) cases with confidence intervals categorised by 
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country, age, and sex for years 1990, 1995, 2000, 2005, and 2010. Details about the materials and 
methods used by the EG to generate these draws can be found elsewhere [1-5]. These data represented 
all African countries included in the African Programme for Onchocerciasis Control (APOC) and the 
Onchocerciasis Control Programme (OCP) for which initial Rapid Epidemiological Mapping of 
Onchocerciasis (REMO) assessments demonstrated a need for Community-Directed Treatment with 
Ivermectin (CDTI) (defined as having a prevalence of skin nodules greater than 20%). Four countries – 
Rwanda, Mozambique, Kenya, and Gabon – were designated as hypo-endemic countries after initial 
REMO assessments and not included due to sparsity of cases and paucity of data. Estimates for Sudan 
from GBD 2010 were reassigned to South Sudan in GBD 2013 after its independence in 2011 since REMO 
assessments indicated that the vast majority of cases occurred in that area of the former Sudan. The 
tables below show the countries included in each program and the number of corresponding GBD 
locations they represent.  

 APOC Countries OCP Countries 
Countries included Angola, Burundi, Cameroon, 

Central African Republic, Chad, 
Congo, Democratic Republic of 
Congo, Ethiopia, Equatorial Guinea, 
Liberia, Malawi, Nigeria, South 
Sudan, Tanzania, and Uganda 

Benin, Burkina Faso, Côte d'Ivoire, 
Ghana, Guinea Bissau, Guinea, Mali, 
Niger, Senegal, Sierra Leone, and 
Togo 

Hypo-endemic countries 
not included 

Rwanda, Mozambique, Kenya, 
Gabon, Sudan 

 

GBD countries & 
subnationals provided 
by EG 

15 11 

GBD world regions 3 1 
 

Prevalence data for modelling non-fatal outcomes resulting from onchocerciasis in the Americas was 
extracted via a systematic literature review. Web of Science, Scopus, and PubMed were searched with 
the following search strings: 

Database Search string Yield 
PubMed (oncho*[Title/Abstract] OR "river blindness"[Title/Abstract] OR "O. 

volvulus"[Title/Abstract] OR "robles disease"[Title/Abstract] OR "blinding 
filariasis"[Title/Abstract] OR "coast erysipelas"[Title/Abstract] OR “sowda” [Title/Abstract] 
OR “nodding syndrome”[Title/Abstract]) AND (“1980”[Date – Publication] : “2016”[Date – 
Publication]) AND (epidemiology[Title/Abstract] OR prevalence[Title/Abstract] OR 
incidence[Title/Abstract] OR surveillance[Title/Abstract] OR”MDA”[Title/Abstract] OR 
“Mass Drug Administration”[Title/Abstract] OR “Community-directed treatment with 
ivermectin”[Title/Abstract] OR “CDTI”[Title/Abstract] OR “mass treatment”[Title/Abstract] 
OR “multiple ivermectin treatments”[Title/Abstract] OR “monthly doses of 
ivermectin”[Title/Abstract] OR “large scale treatment”[Title/Abstract] OR 
REMO[Title/Abstract] OR “Rapid epidemiological mapping of 
onchocerciasis”[Title/Abstract] OR APOC[Title/Abstract] OR “African Programme for 
Onchocerciasis Control”[Title/Abstract] OR OCP[Title/Abstract] OR “Onchocerciasis Control 
Programme”[Title/Abstract]) NOT(Animals[MeSH] NOT Humans[MeSH]) 

986 

Web of 
Science 

TS=(oncho* OR "river blindness" OR "O. volvulus" OR "robles disease" OR "blinding 
filariasis" OR "coast erysipelas" OR sowda OR “nodding syndrome”) AND TS=(epidemiology 

1,144 
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OR prevalence  OR incidence  OR surveillance OR MDA OR “Mass Drug Administration” OR 
“Community-directed treatment with ivermectin” OR CDTI OR “mass treatment” OR 
“multiple ivermectin treatments” OR “monthly doses of ivermectin” OR “large scale 
treatment” OR REMO OR “Rapid epidemiological mapping of onchocerciasis” OR APOC OR 
“African Programme for Onchocerciasis Control” OR OCP OR “Onchocerciasis Control 
Programme”) NOT TS=((Animals NOT Humans)) 

SCOPUS (TITLE-ABS-KEY(oncho* OR "river blindness" OR "O. volvulus" OR "robles disease" OR 
"blinding filariasis" OR "coast erysipelas")) AND TITLE-ABS-KEY(epidemiology OR 
prevalence OR incidence OR surveillance OR MDA OR "Mass Drug Administration" OR 
"Community-directed treatment with ivermectin" OR CDTI OR "mass treatment" OR 
"multiple ivermectin treatments" OR "monthly doses of ivermectin" OR "large scale 
treatment" OR REMO OR "Rapid epidemiological mapping of onchocerciasis" OR APOC OR 
"African Programme for Onchocerciasis Control" OR OCP OR "Onchocerciasis Control 
Programme") AND NOT KEY(Animals NOT Humans) AND PUBYEAR > 1979 

2,000 

 

This yielded 4,130 results in total, which was reduced to 2,502 after removing duplicates. The title and 
abstracts were screened for inclusion or exclusion with the following criteria: 

Exclusion criteria: 
• Pre-1980 
• Non-original source 
• Non-representative population 

o Vulnerable populations (eg, slum-dwellers, prisoners, orphans, high-risk jobs, etc.) 
o Hospital-based samples (including saved stool samples) 
o Non-native peoples (eg, migrants, expats, nomads, etc.) 
o Immunosuppression/illness (eg, HIV, TB, CA, RA, asthma, malaria, handicap, etc.) 

• Non-human population 
• Does not meet case definition 
• Case-control study 

 
Sixty-one articles were identified for full text screening and extraction from the historically endemic 
American countries: Guatemala, Brazil, Ecuador, Venezuela, Mexico, and Colombia. 

Severity splits/sequelae 

The table below shows the list of common clinical manifestations of onchocerciasis and the sequelae to 
which they have been mapped along with the lay description and the associated disability weight (DW) 
of each sequela. 

Clinical manifestation Sequela name Lay description DW 
Uveitis; Punctate 
keratitis; Optic neuritis; 
Torpid Iritis; 
Onchochorioretinitis 

Moderate vision 
impairment 

“has vision problems that make it difficult to 
recognize faces or objects across a room” 

0.031 
(0.019–
0.049) 

Sclerosing keratitis; 
Optic neuropathy; 
Optic atrophy; 

Severe vision 
impairment 

“has severe vision loss, which causes 
difficulty in daily activities, some emotional 
impact (for example worry), and some 

0.184 
(0.125–
0.258) 
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Choroidoretinopathy; 
Cataracts 

difficulty going outside the home without 
assistance” 

Blindness Blindness “is completely blind, which causes great 
difficulty in some daily activities, worry and 
anxiety, and great difficulty going outside the 
home without assistance” 

0.187 
(0.124–
0.260) 

Acute papular 
onchodermatitis; 
Onchocercomata 
(subcutaneous 
nodules) 

Mild skin 
disease 

“has a slight, visible physical deformity that is 
sometimes sore or itchy. Others notice the 
deformity, which causes some worry and 
discomfort” 

0.027 
(0.015–
0.042) 

Chronic papular 
onchodermatitis; 
Lichenified 
onchodermatitis 
(“sowda”); 
Lymphadenopathy 

Mild skin 
disease without 
itch 

“has a slight, visible physical deformity that 
others notice, which causes some worry and 
discomfort” 

0.011 
(0.005–
0.021) 

Skin atrophy; 
Depigmentation 
(“leopard skin”) 

Moderate skin 
disease 

“has a visible physical deformity that is sore 
and itchy. Other people stare and comment, 
which causes the person to worry. The 
person has trouble sleeping and 
concentrating” 

0.188 
(0.124–
0.267) 

Hanging groin; 
Lymphoedema 

Severe skin 
disease without 
itch 

“has an obvious physical deformity that 
makes others uncomfortable, which causes 
the person to avoid social contact, feel 
worried, sleep poorly, and think about 
suicide” 

0.405 
(0.275–
0.546) 

 Asymptomatic 
onchocerciasis 

NA NA 

 
Modelling strategy 
The nonfatal modelling for onchocerciasis included six major steps. In the first step, GBD 2010 
prevalence was exponentially extrapolated to obtain GBD 2017 estimates. Acute skin disease level 2 and 
chronic skin disease level 2 were summed to create the moderate skin disease sequela. Uncertainty was 
quantified and provided by the EG for all estimates except those of visual impairment and blindness. In 
these cases, for each of the OCP draws the number of cases were multiplied by a random value (the 
exponent of a normally distributed variable with mean zero and standard deviation 0.1) in order to add 
uncertainty. Within each draw, the same randomly drawn value was applied to all country-year-age-sex 
estimates. Visual impairment was then split into moderate and severe vision impairment by first 
multiplying the visual impairment estimates by a random value (from a normal distribution with mean 
0.84 and standard deviation 0.0031) to generate moderate vision impairment, and then subtracting the 
resulting estimates from visual impairment to obtain estimates of severe vision impairment. Prevalence 
of sequelae was calculated by dividing the cases by the population. 

The second step in modelling morbidity due to onchocerciasis was the adjustment of uncertainty in the 
conversion of nodule prevalence to microfilaria (mf) prevalence and in the effects of mass drug 
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administration (MDA). To adjust for uncertainty in translation of nodule prevalence to mf prevalence, 
the final OCP draws from the first step were logit transformed and uncertainty was added from a 
random value drawn from a normal distribution to the transformed estimates. The resulting estimates 
were then normalised and scaled using estimates published elsewhere [1]. To adjust for uncertainty due 
to MDA, the year when MDA with ivermectin started was set according to the table below. 

Country MDA start year 
Angola, Burundi, South Sudan 2005 
Congo, Ethiopia, DRC 2001 
Cameroon, Central African Republic, Equatorial Guinea, Liberia, Nigeria, Uganda 1999 
Chad, Niger, Tanzania 1998 
Malawi 1997 
All others 1990 

 

The uncertainty in the time trend was then multiplied by the normalised prevalence estimates and the 
final prevalence was obtained by re-expanding the scaled normalised draws and adjusting the scale back 
from logit scale. 

Third, since EG draws were provided before the independence of South Sudan in 2011, Sudan estimates 
from the EG were partitioned between Sudan and South Sudan. Population at risk (PAR) estimates pre- 
and post-Abu Hamed foci elimination in 2015 in Sudan were used to proportionally split cases between 
the two countries [2]. REMO maps showing definite needs for community-directed treatment with 
ivermectin (CTDI) were digitised and overlaid with population per pixel rasters to produce estimates of 
PAR pre-Abu Hamed elimination. Post-Abu Hamed elimination in 2015, REMO maps were edited to 
remove the foci as a definite CDTI areas and estimates were reproduced.  

In the fourth step, prevalence in the Ethiopia subnationals was estimated separately and appended to 
the Africa model. Subnational draws were split proportionally based on sample size weighted 
prevalence from prevalence data, using population at risk estimates derived from digitising a map of 
onchocerciasis endemic districts in 2015 from Meribo and colleagues to convert into case space [3]. A 
proportion of cases falling into each subnational was then used to split national case numbers provided 
by EG draws into each subnational. 

In the fifth step, prevalence of onchocerciasis in Yemen was modelled separately and combined with the 
Africa model. Due to limited data, this was done utilising one data point from the Ministry of Health 
published in 1991 only accounting for population change [22]. Furthermore, the global age-sex trend 
was imposed to produce age-sex-specific estimates. The clinical manifestation of Yemeni onchocerciasis 
is different from other regions, notably the atypical and most severe cutaneous manifestation known as 
sowda [23]. Therefore, all cases of onchocerciasis are being mapped to mild skin disease due to 
onchocerciasis without itch.  

In the sixth step, prevalence of onchocerciasis in the Americas was modelled separately and combined 
with the Africa and Yemen models. For the GBD estimation period, onchocerciasis is known to have 
occurred in six countries of Central and Southern America: Mexico, Guatemala, Colombia, Ecuador, 
Brazil and Venezuela. The epidemiology of onchocerciasis is very different in these countries than in 
Africa because it has only occurred in relatively small, well defined foci. These foci have been mapped 
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and thoroughly monitored since the early 1990s with the formation of the Onchocerciasis Elimination 
Program of the Americas (OEPA) and all of the prevalence surveys conducted are only representative of 
these areas. Additionally, certain foci are geographically continuous across national boundaries. 
Therefore, we modelled onchocerciasis in these countries at the focus level among the population at risk 
in each focus instead of at the national level.  

Population at risk for each focus was modelled using data from OEPA on baseline population at risk [6] 
and data from OEPA and peer-reviewed studies on dates of elimination in each focus [6-19]. This was 
done with a Poisson model using year splines as a covariate, and 1,000 draws of the population at risk 
were drawn from the predicted mean and standard error. The prevalence of disease among the 
population at risk was subsequently modelled using a generalised linear model with a binomial family, 
logit link, no intercept term, and random effects on a combined-foci variable created by grouping foci by 
geographic contiguity and nearness when data were sparse. Covariates included an indicator term on 
the foci, the number of years since MDA began, and splines on age. One thousand draws of prevalence 
were calculated from 1,000 draws of beta values from the variance-covariance matrix and adjusted by 
the estimated population at risk in each focus-year to determine the number of cases. The cases were 
then summed by GBD geography and year and divided by national population to find the national 
prevalence. While the model predicted case values very close to zero in the countries where elimination 
has occurred, these were overwritten to zero values for all years after certified elimination. The ratio of 
global all-age, all-sex prevalence of each sequela to the all-cases prevalence from the Africa estimates 
was applied to all-cases prevalence from the Americas to calculate prevalence of each sequelae. 

Lastly, to estimate the prevalence of asymptomatic onchocerciasis, the prevalence of morbidity (vision 
loss, blindness and skin conditions) was subtracted from the overall onchocerciasis prevalence.  
Moderate vision impairment, severe vision impairment, and blindness estimates were each multiplied 
by a factor of 8/33 before subtraction to account for cases that have concurring symptoms. 
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3.3.5 Rabies SDG Capstone Appendix 
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Input data and methodological summary 
 

Case definition 
Rabies is a fatal viral infection transmitted by animal bites. Without prophylactic vaccination the disease is 
almost universally fatal. The disease has a long incubation period (1-3 months), and early intervention 
with prophylactic vaccination is nearly 100% effective in preventing symptomatic disease. It is considered 
a neglected tropical disease (NTD). We model symptomatic infections, not including those infections in 
which intervention prevented the onset of symptomatic disease, corresponding to the ICD10 code A82. 

Input data 
 Model inputs 

As we derive our estimate of cases from our estimate of deaths, no incidence data are used in the model. 
For GBD 2017, we modelled rabies mortality using all available data in the cause of death database. Data 
points were outliered if they reported an improbable number of rabies deaths (eg, zero rabies deaths in a 
hyperendemic country) or if their inclusion in the model yielded distorted trends. In some cases, multiple 
data sources for the same location differed dramatically both in their quality and reported rabies 
mortality (eg, a verbal autopsy and vital registration source). In these cases, the lower-quality data source 
was outliered. 
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Modelling strategy  
We derive estimates of the number of symptomatic rabies infections (ie, those not averted through 
prophylactic vaccination) based on rabies mortality estimates, assuming 99% case fatality. All cases are 
assumed to be severe. 
 
We modelled rabies mortality using a two-model hybrid approach 1) a global CODEm model of all 
locations, using all data in the CoD database; and 2) a CODEm model restricted to data-rich countries.     
 
Sequela description and DW 
 
There is only one sequela and associated disability weight for rabies, which is severe. The lay description 
is included in the table below. 
 
Table 2. Sequela, description, and DW 
 

Sequela Description 
Disability 
Weight  
(95% CI) 

Severe Has a high fever and pain, and feels very weak, which 
causes great difficulty with daily activities. 

0.133 
(0.088–0.19) 

 
 

Changes from GBD 2016 to GBD 2017 
We have made no substantive changes in the modelling strategy for rabies from GBD 2016.  
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3.3.5 Schistosomiasis Capstone Appendix 
 

Flowchart 

 
 
Case definition 
Schistosomiasis, also known as bilharzia or “snail fever,” is a helminth disease caused by infection with 
five species of the parasite Schistosoma, namely, S. mansoni, S. japonicum, S. haematobium, S. mekongi, 
and S. intercalatuma. It is considered a neglected tropical disease (NTD). The first three species cause the 
most infection and the last two rarely cause disease. Diagnosis is made by microscopic exam of stool or 
urine for parasite eggs. For less advanced infections, serologic techniques are used. The ICD-10 codes for 
schistosomiasis are B65-B65.9. 

 
Input data 
 Model inputs 

To model nonfatal outcomes due to schistosomiasis, we conducted a systematic literature review, 
extracting prevalence data from 1980 to 2016 for the five species of schistosomiasis listed above. The 
search string used in the systematic review is (schistosom*[Title/Abstract] OR bilharzia*[Title/Abstract] 
OR "snail fever"[Title/Abstract]) AND ("1990"[Date - Publication] : "3000"[Date - Publication]) AND 
(epidemiolog* OR inciden* OR prevalen* OR seroprevalen*) NOT (animals[mesh] NOT humans[mesh]). 
Additionally, we used data compiled by the Global Atlas of Helminth Infections (GAHI), which includes 
grey literature and unpublished data.    

 Mass drug administration data 

Mass drug administration data were extracted from the WHO PCT Databank [1].  

 Severity splits/sequelae 

The table below shows the list of clinical sequelae (including mild, moderate, and severe anaemia) due to 
schistosomiasis, their lay descriptions, and the associated disease stages and disability weights. Using 
literature [1], a list of eight possible clinical sequelae and anaemia sequelae were defined (mild infection, 
mild diarrhoea, haematemesis (vomiting blood), hepatomegaly, ascites (buildup of fluid in the peritoneal 
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cavity), dysuria (painful urination), bladder pathology, hydronephrosis (swelling of kidney due to buildup 
of urine in the kidney), mild anaemia, moderate anaemia, and severe anaemia).  

Table 2. Clinical sequela, lay descriptions, disease stages, and DWs 

Clinical sequela Lay description Disease 
stage 

Disability weights 
(DWs) 

Mild infection has a low fever and mild discomfort , but no 
difficulty with daily activities 

1 0.006 (0.002–
0.012) 

Mild diarrhoea  1 0.056 
Hepatomegaly has some pain in the belly that causes nausea but 

does not interfere with daily activities 
2 0.011 (0.005–

0.021) 
Dysuria has some pain in the belly that causes nausea but 

does not interfere with daily activities 
2 0.011 (0.005–

0.021) 
Hydronephrosis has some pain in the belly that causes nausea but 

does not interfere with daily activities 
2 0.011 (0.005–

0.021) 
Haematemesis vomits blood and feels nauseated 3 0.325 (0.209–

0.463) 
Ascites has pain in the belly and feels nauseated. The 

person has difficulties with daily activities 
3 0.114 (0.078–

0.159) 
Bladder pathology has some pain in the belly that causes nausea but 

does not interfere with daily activities 
3 0.011 (0.005–

0.021) 
Mild anaemia feels slightly tired and weak at times, but this does 

not interfere with normal daily activities 
NA 0.004 (0.001–

0.008) 
Moderate 
anaemia 

feels moderate fatigue, weakness, and shortness 
of breath after exercise, making daily activities 
more difficult 

NA 0.052 (0.034–
0.076) 

Severe anaemia feels very weak, tired, and short of breath, and 
has problems with activities that require physical 
effort or deep concentration 

NA 0.149 (0.101–
0.210) 

 
Modelling strategy 
The morbidity model for schistosomiasis involved a multi-step process. First, we ran a single-parameter 
prevalence model in DisMod-MR 2.1 using the prevalence data extracted in the systematic review and 
from the GAHI database. We make the assumption that all of our data are measured within a population 
at risk – therefore, the estimates from the DisMod model represent prevalence estimates among the 
population at risk for schistosomiasis. Additionally, we included the MDA treatment data from the WHO 
as a country-level covariate in the DisMod model. Second, we ran three separate ecological niche maps 
for the three major species of schistosomiasis (S. mansoni, S. haematobium, and S. japonicum) using a 
boosted regression tree and all geolocated data that were extracted from both the literature review and 
the GAHI database. The output was 1000 maps (representing 1000 draws) for each of the three species 
representing the suitability for schistosomiasis to exist in each 5x5 km square. Then, we extracted 
population at risk by optimizing the area under the curve for each of the 1000 maps for each of the three 
species, overlaid the three species maps over one another, and extracted 1000 draws of proportion of the 
population at risk for schistosomiasis at the GBD location level.  
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The BRT was overestimating in Brazil and China. In Brazil, we masked out urban areas from the population 
at risk rasters, and in China we used year-specific masks based off of published literature on county-
specific elimination of schistosomiasis, allowing the geographic restrictions to be implemented at a more 
detailed level where information is available (5). 

We then scaled the prevalence estimates to the population at risk estimates from the ecological niche 
map to get age/sex/location/year all-schistosomiasis prevalence envelopes. 4) We ran a generalized linear 
model to get species-specific proportional prevalence on data from literature that reported both S. 
haematobium and S. mansoni infection, and 5) literature-informed parameters (a, b, c) for translating 
infection (x) to morbidity (y): y = (a + bx^c)/(1 + bx^c) – a [2-4]. We used the species-specific conversion 
factors calculated in step (4) to split the all-schistosomiasis envelope into species-specific schistosomiasis. 
We then used the parameters determined in step (5) to translate infection into morbidity to get 
age/sex/year/location-specific prevalence of sequelae. The burden of anemia due to schistosomiasis was 
estimated (see anaemia documentation for details). 

Model evaluation was done by separately assessing the fit of the single-parameter DisMod models and 
checking the final estimates produced after age-sex splits. Plots of time trends of prevalence across 
locations and age were used to evaluate the results. In addition, maps of the global distribution of total 
schistosomiasis prevalence and prevalence of sequelae due to schistosomiasis were also assessed across 
time. 

Changes from GBD 2016 to GBD 2017 
The boosted-regression tree environmental suitability maps were further developed in 2017, and were 
selected based off of improved area under the curve (AUC) statistics. The urban mask for Brazil was also 
newly implemented this year. 
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3.3.5 Vision Impairment due to Trachoma SDG Capstone Appendix 
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Case definition 
We model vision impairment as visual acuity <6/18 according to the Snellen chart. The following 
impairments are modeled:  

Condition Case definition 

Blindness Visual acuity of <3/60 or 
<10% visual field around 
central fixation 

Severe vision impairment  ≥3/60 and <6/60 

Moderate vision impairment  ≥6/60 and <6/18 

Near vision impairment envelope  Near visual acuity of <6/18 
distance equivalent 

  

Near vision impairment describes the progressive inability to focus on near objects as individuals age. This 
impairs the ability to read. The majority of presbyopia can be corrected by the use of reading glasses, 
contact lenses, or refractive surgery.  

We model vision impairment due to the following causes: uncorrected refractive error, cataract, 
glaucoma, macular degeneration, diabetic retinopathy, trachoma, vitamin A deficiency, retinopathy of 
prematurity, meningitis, encephalitis, onchocerciasis, and other vision loss. Vision loss due to vitamin A 
deficiency, retinopathy of prematurity, meningitis, encephalitis, and onchocerciasis are modelled as part 
of their underlying cause as described in their respective sections.  

Refractive error is blurry vision due to the lens’s inability to focus. The blurriness caused by refractive 
error can be addressed through the use of contact lenses, glasses, or refractive surgery. Cataract is 
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clouding of the lens of the eye due to protein buildup that impairs vision. Glaucoma is a condition with 
increased intraocular pressure which can lead to damage of the optic nerve. Macular degeneration is a 
deterioration of the macula, leading to central vision loss. Diabetic retinopathy is damage to the retina 
caused by damaged blood vessels that can leak blood into the retina and cause scarring of the retina. 
Trachoma results from a conjunctival bacterial infection (Chlamydia trachomatis) that produces 
inflammation and scarring which leads to an inversion of the eyelids and eyelashes scratching the cornea, 
which eventually leads to scarring of the cornea and vision impairment or blindness. 

 

Input data 
 Model inputs 
Data on overall vision impairment come from surveys measuring visual acuity in representative 
population-based studies, either from publications in peer-reviewed and grey literature or surveys for 
which we had the unit record data. Data were excluded if no test was used of visual acuity that can be 
converted to the Snellen scale, and if a study did not assess “presenting” or “best-corrected” vision. A 
subset of these studies that reported vision loss by cause were used to estimate the prevalence of vision 
loss due to cataract, glaucoma, macular degeneration, diabetic retinopathy, and other causes.  

 
For GBD 2015, we conducted a systematic review for new sources since GBD 2013 (covering 1/1/2013 – 
5/20/2015), using the following search string:  

((((glaucoma[Title/Abstract] OR cataract[Title/Abstract] OR macular[Title/Abstract] OR 'refractive 
error'[Title/Abstract] OR presbyopia[Title/Abstract]) OR (('blindness'[MeSH Terms] OR 'blindness'[All 
Fields]) OR 'vision, low'[MeSH Terms])) AND ('2013'[PDAT] : '3000'[PDAT])) AND 'humans'[MeSH Terms]) 
AND (prevalence[Title/Abstract] OR incidence[Title/Abstract] OR epidemiology[Title/Abstract])   
 

This yielded 1,169 results, of which we extracted 20 sources. Furthermore, we extracted from the 
following nationally representative surveys measuring visual acuity: the WHO Studies on Global Ageing 
and Adult Health (SAGE) and the United States National Health and Examination Surveys (NHANES).  

For GBD 2016 and GBD 2017, we did a comprehensive extraction of the Rapid Assessment of Avoidable 
Blindness (RAAB) repository (http://raabdata.info/), a database of vision impairment studies in developing 
settings across the world. There are 266 site-years of data, the majority of which have publicly available 
reports or publications of the data. A standardised methodology was used by all sources in the repository. 
This allowed us to use all 185 available reports, 70 of which were newly included for GBD 2017. In 
addition, we extracted two state-level national surveys from India.  

Due to the sparse literature reporting measured near-vision visual acuity, we also extracted data from the 
following nationally representative studies measuring self-reported near vision loss: SAGE; NHANES; the 
Surveys of Health, Ageing, and Retirement in Europe (SHARE); the Multi-Country Survey Study on Health 
and Responsiveness (MCSS); and the World Health Surveys (WHS).  

Several adjustments were made to raw data.  
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1) Where studies reported visual acuity spanning multiple thresholds (eg, <6/60, rather than 
separate severe and blind estimates), we crosswalked using ratios predicted by a linear 
regression on age, using data from studies reporting vision loss by each severity.  

2) Some studies reported best-corrected vision impairment, but not presenting vision impairment 
(PVI). We crosswalked these data points using a linear regression of logit-transformed PVI 
prevalence with fixed effects on best-corrected VI, age, and per capita lag-distributed income 
(LDI) and super-region random effects. This gave us a predicted PVI data points for these studies 
not explicitly reporting PVI. These crosswalked data points were flagged with a study-level 
covariate that increased standard error in DisMod.  

3) Where data points spanned more than 20 years of age, we age-split using an algorithm that 
applies the age-pattern of the super-region to split the data to five-year age groups.  
 

Whereas other vision impairment aetiologies are modelled based on prevalence data, vision impairment 
due to trachoma is modelled as a proportion of the overall best-corrected vision impairment envelope, a 
strategy that was chosen based on the nature of available data. 
 
The table below shows the number of site-years of data included in envelope models for GBD 2017, as 
well as the number of countries, regions, and super-regions represented. 

Blindness impairment envelope 
  Prevalence 

Site-years (total) 415 
Number of countries with data 100 

Number of GBD regions with data (out of 21 regions) 20 
Number of GBD super-regions with data (out of 7 super-regions) 7 

 
Severe vision impairment envelope 

  Prevalence 
Site-years (total) 402 

Number of countries with data 97 
Number of GBD regions with data (out of 21 regions) 19 

Number of GBD super-regions with data (out of 7 super-regions) 7 
 

Moderate vision impairment envelope 
  Prevalence 

Site-years (total) 378 
Number of countries with data 94 

Number of GBD regions with data (out of 21 regions) 19 
Number of GBD super-regions with data (out of 7 super-regions) 7 
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Health states and disability weights 
 

Health state name Health state description Disability weight 

Distance vision, severe 
impairment 

This person has severe vision loss, which causes difficulty in daily activities, some emotional impact (for 
example, worry), and some difficulty going outside the home without assistance. 

0.184 
(0.125–0.259) 

Distance vision, 
moderate impairment This person has vision problems that make it difficult to recognise faces or objects across a room. 

0.031 
(0.019–0.049) 

Distance vision 
blindness 

This person is completely blind, which causes great difficulty in some daily activities, worry and anxiety, 
and great difficulty going outside the home without assistance.  

0.187 
(0.124–0.26) 

Near vision loss 
This person has difficulty seeing things that are nearer than 3 feet, but has no difficulty with seeing 
things at a distance.  

0.011 
(0.005–0.02) 

 

Modelling strategy  
We modelled the prevalence of vision loss in two steps. In the first step, we estimated the total 
prevalence estimates of presenting vision loss: moderate vision impairment, severe vision impairment, 
blindness, and near vision impairment (presbyopia). We directly derived prevalence of near vision 
impairment from this step, whereas the remaining three models that reflect different severity levels of 
distance vision loss continued to the next step.  

1) Estimate severity-specific vision impairment (the “envelopes”) 
First, we ran five DisMod-MR 2.1 models to estimate the total prevalence estimates of presenting vision 
loss: moderate vision impairment, severe vision impairment, blindness, near vision impairment 
(presbyopia), and presenting vision impairment (moderate + severe + blindness). The presenting vision 
impairment model was used as a covariate in the severity-specific models to improve consistency across 
severities.  

Betas and exponentiated values, which can be interpreted as an odds ratio, are shown in the table below 
for each covariate. The best-corrected covariate indicates whether the test measures visual acuity with 
the level of correction the patient presents with (best_corrected = 0) or the ophthalmologist provides 
additional correction via pinhole (best_corrected = 1). Rapid-assessment corrects for potential biases in 
cause-specific vision loss from studies using expedited visual acuity measurement. Socio-demographic 
Index (SDI) and Healthcare Access and Quality (HAQ) index are used as location covariates as a proxy 
measure of access to eye care such as cataract surgery. Data points that were crosswalked from best-
corrected visual acuity are flagged with a z-cov to adjust uncertainty in the crosswalk process. For near 
vision impairment, non-standard severity definition is used to crosswalk between the self-report 
questionnaire of SHARE (nonstandard) and the other surveys. All self-reported data are crosswalked to 
examination data based on whether the survey question asked about reading at a comfortable distance 
or recognising an object at arm’s length.  

Model Covariate name Type Measure Beta value Exponentiated 
value 

Vision impairment due to 
glaucoma unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.45 ( -
0.94 to -
0.039) 

0.64 (0.39–
0.96) 
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Blindness due to glaucoma 
unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -1.04 ( -
1.59 to -
0.39) 
 

0.35 (0.20–
0.67) 

Vision impairment due to 
cataract unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.36 (-
0.67 to -
0.033) 

0.70 (0.51–
0.97) 

Blindness due to cataract 
unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -2.9 (-3 to -
2.64) 
 

0.055 (0.050–
0.072) 
 

Vision impairment due to 
macular degeneration 
unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence 0.50 (-0.21 
to 0.97) 

1.65 (0.81–
2.65) 

Blindness due to macular 
degeneration unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence 0.027 (-
0.85 to 
0.91) 

1.03 (0.43–
2.48) 

Near vision loss Socio-
demographic 
Index 

Country covariate Prevalence -0.8 (-1.37 
to -0.2) 

0.45 (0.25–
0.82) 

Near vision loss Non-standard 
severity 
definition 

Study-level x-
covariate 

Prevalence -0.19 (-0.2 
to -0.17) 

0.83 (0.82–
0.85) 

Near vision loss Comfortable 
reading 
distance 

Study-level x-
covariate 

Prevalence -0.49 (-0.5 
to -0.46) 

0.61 (0.61–
0.63) 

Near vision loss Recognise 
object at arm’s 
length 

Study-level x-
covariate 

Prevalence 0.035 (-
0.021 to 
0.094) 

1.04 (0.98–
1.10) 

Vision impairment due to 
other vision loss 
unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.064 (-
0.23 to -
0.0031) 

0.94 (0.79–
1.00) 

Blindness due to other 
vision loss unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.81 (-
0.99 to -
0.47) 
 

0.45 (0.37–
0.63) 

Vision impairment 
envelope 

Socio-
demographic 
Index 

Country covariate Prevalence -0.29 (-
0.52 to -
0.065) 
 

0.75 (0.59–
0.94) 

Blindness impairment 
envelope 

Healthcare 
Access and 
Quality index 

Country covariate Prevalence -0.018 (-
0.022 to -
0.016) 

0.98 (0.98–
0.98) 

Blindness impairment 
envelope 

Presenting 
vision 
impairment 

Country covariate Prevalence 0.33 
(0.17–
0.48) 

1.40 (1.18–
1.62) 

Blindness impairment 
envelope 

Socio-
demographic 
Index 

Country covariate Prevalence -0.077 (-
0.25 to -
0.0038) 

0.93 (0.78–
1.00) 

Blindness impairment 
envelope 

Best-corrected 
crosswalk 

Study-level z-
covariate 

Prevalence 0.0025 
(0.00020–
0.0070) 

1.00 (1.00–
1.01) 
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Moderate vision 
impairment envelope 

Presenting 
vision 
impairment 

Country covariate Prevalence 0.74 
(0.65–
0.83) 

2.09 (1.92–
2.29) 

Moderate vision 
impairment envelope 

Socio-
demographic 
Index 

Country covariate Prevalence -0.021 (-
0.082 to -
0.000018) 

0.98 (0.92–
1.00) 

Moderate vision 
impairment envelope 

Best-corrected 
crosswalk 

Study-level z-
covariate 

Prevalence 0.10 
(0.070–
0.13) 

1.11 (1.07–
1.14) 

Severe vision impairment 
envelope 

Presenting 
vision 
impairment 

Country covariate Prevalence 0.35 
(0.24–
0.45) 

1.42 (1.28–
1.58) 

Severe vision impairment 
envelope 

Socio-
demographic 
Index 

Country covariate Prevalence -0.018 (-
0.072 to -
0.0014) 

0.98 (0.93–
1.00) 

Severe vision impairment 
envelope 

Best-corrected 
crosswalk 

Study-level z-
covariate 

Prevalence 0.032 
(0.0073–
0.062) 

1.03 (1.01–
1.06) 

Vision impairment due to 
diabetes mellitus 

Diabetes age-
standardised 
prevalence 
(proportion) 

Country covariate Prevalence 1.25 
(0.85–
1.66) 
 

3.50 (2.35–
5.24) 
 

Vision impairment due to 
diabetes mellitus 

Socio-
demographic 
Index 

Country covariate Prevalence -0.066 (-
0.24 to -
0.00064) 

0.94 (0.79–
1.00) 

Blindness due to diabetes 
mellitus unsqueezed 

Diabetes age-
standardised 
prevalence 
(proportion) 

Country covariate Prevalence 3.79 
(3.19–
4.00) 

44.40 (24.41–
54.33) 

Blindness due to diabetes 
mellitus unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -1.58 (-
1.99 to -
0.6) 

0.20 (0.14–
0.55) 

Moderate vision 
impairment due to 
uncorrected refractive 
error unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.95 (-1 to 
-0.82) 

0.39 (0.37–
0.44) 

Severe vision impairment 
due to uncorrected 
refractive error 
unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.95 (-1 to 
-0.83) 
 

0.39 (0.37–
0.44) 

Blindness due to 
uncorrected refractive 
error unsqueezed 

Socio-
demographic 
Index 

Country covariate Prevalence -0.98 (-1 to 
-0.93) 

0.37 (0.37–
0.40) 

 

2) Estimate cause-specific vision impairment  
In the second step, we estimated the prevalence of vision loss due to multiple causes: refractive error, 
cataract, glaucoma, macular degeneration, diabetic retinopathy, retinopathy due to prematurity, 
trachoma, vitamin A deficiency, onchocerciasis, meningitis, and other causes not classified elsewhere. The 
vision loss due to retinopathy of prematurity, vitamin A deficiency, onchocerciasis, meningitis, tetanus, 
and neonatal conditions was modelled as part of these underlying causes. Vision loss due to trachoma is 
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modelled as a proportion of the envelope, with separate proportion models for vision impairment and 
blindness. For each of cataract, glaucoma, macular degeneration, diabetic retinopathy, and other vision 
loss, we ran two DisMod-MR 2.1 models: one for the combined category of moderate and severe vision 
loss due to the cause, and one for blindness due to the cause. Moderate and severe vision loss were 
modelled together because input data were mostly available for the aggregate. Refractive error was 
modelled in three models, one for each severity. We used the following age restrictions:  

Cause Minimum age  
Cataracts 20 
Glaucoma 45 
Macular degeneration 45 
Diabetic retinopathy 20 
Trachoma 15 
Other vision loss 0 

 

We estimated the proportions of low vision and blindness due to trachoma using custom mixed-effects 
models. For consistency, the two models (blindness and low vision) were parameterised identically and 
differ only in their input data. Our model included fixed effects on age (using cubic splines with knots at 0, 
40, and 100 years of age), sex, and a covariate derived from a principal components analysis of the 
proportion of the population at risk for trachoma and the proportion of the population with access to 
sanitation. We included nested random effects on super-region, region, and country. Finally, we applied 
geographic and age restrictions to ensure that we estimate zero proportions in non-endemic locations 
and among those younger than 15 year of age (as scarring of the cornea due to trachoma takes decades 
to develop). The prevalence of trachoma at each severity level was calculated by multiplying the 
proportion of vision loss (vision impairment or blindness) due to trachoma by the corresponding best-
corrected vision loss envelope.  

We split the moderate plus severe vision loss estimates for each cause into moderate and severe using 
the ratio of presenting moderate and severe vision loss envelopes. As exceptions, onchocerciasis and 
retinopathy of prematurity were modelled for moderate and severe vision loss as part of the estimation 
process of these causes.  

We scaled the cause-specific vision loss prevalence to the total prevalence of the best-corrected vision 
loss envelopes for each of the three severity levels. The final result is prevalence of vision loss due to each 
cause by severity.  

 

The following changes have been implemented since GBD 2016: 

- We added an additional 70 RAAB sources  
- Several data points from previous rounds have been reevaluated and then re-extracted or 

determined to not meet our criteria and were taken out of the model 
- We elevated presbyopia and refractive error from the sequela-level to the cause-level within the 

GBD hierarchy 
- We crosswalk self-report near vision data by survey question 
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3.4.1 Non-communicable Disease (NCD) Mortality SDG Capstone 
Appendix 
 

Cardiovascular diseases, cancers, diabetes mellitus, and chronic respiratory diseases  
 

Indicator definition 
This modeling strategy encompasses the indicator associated with non-communicable disease mortality 
(3.4.1). 
 

Indicator 3.4.1 
As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.4, by 2030, reduce by one third premature mortality from NCDs through prevention and treatment and 
promote mental health and well-being, is measured using SDG Indicator 3.4.1, deaths due to 
cardiovascular disease, cancer, diabetes, and chronic respiratory disease among populations aged 30 to 
70 per 100,000. 
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3.4.1: Cardiovascular Diseases 
 

Cause of death estimation

Final burden 
estimation

Legend

YLLs

Vital registration 
data

Verbal autopsy data

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
Cardiovascular 

diseases

CodCorrectLocation-level 
covariates

Input dataInput data

ProcessProcess

ResultsResults

DatabaseDatabase

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Surveillance data

Disability weights

Nonfatal

Burden estimation

Cause of death

Covariates

 

 

Input data 
Vital registration, verbal autopsy, and surveillance data were used to model the parent cardiovascular 
envelope. We outliered non-representative subnational verbal autopsies from a number of Indian states. 
We also outliered verbal autopsy data sources that were implausibly low in all age groups and ICD8 and 
ICD9 BTL data points that were inconsistent with the rest of the data and created implausible time trends. 

 
Modelling strategy  
We used a standard CODEm approach to model deaths from cardiovascular diseases. The covariates 
included in the ensemble modelling process are listed in the table below. There have been no substantive 
changes from the approach used in GBD 2016. 

 

Table: Selected covariates for CODEm models, cardiovascular diseases 

Covariate Transformation Level Direction 
Summary exposure variable, cardiovascular disease None  1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Trans fatty acid None 1 1 
Mean BMI None 2 1 
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Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose (mmol/L) None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution (all fuel types) None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 0 
Omega-3 (kcal/capita, adjusted) Log 3 -1 
Fruits (kcal/capita, adjusted) None 3 -1 
Vegetables (kcal/capita, adjusted) None 3 -1 
Nuts and seeds (kcal/capita, adjusted) None 3 -1 
Whole grains (kcal/capita, adjusted) None 3 -1 
Pulses/legumes (kcal/capita, adjusted) None 3 -1 
PUFA adjusted (percent) None 3 -1 
Alcohol (litres per capita) None 3 0 
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3.4.1 Cancers 
 

Input data and methodological summary for all cancers except for non-melanoma skin cancer 

Cancer Registry (CR)  Data:
Contains incidence and mortality data 

(mortality data mostly from vital 
registration (VR))

Format mortality 
data

Format incidence 
data

Map mortality data 
to GBD cause using 

mortality map 

Map incidence data 
to GBD cause using 

nonfatal map

ICD 10 subtotal 
recalculation

Age/sex split 
incidence data

Redistribute cancer 
data

Combine matching 
incidence and 
mortality data 

MI ratio 
model 

estimates

Combine MI estimates with 
best incidence data

Cancer 
mortality 
inputs to 
CoD DB

Run mortality estimates 
through CoD prep process

CoD DB

VR and Verbal 
Autopsy cancer 

death data

CODEm

Cause 
disaggregation

Remove duplicates

Literature 
review for liver 

cancer 
proportions

Model proportions 
for liver cancer in 

DisMoD 

Liver cancer 
proportions

Age/Sex split 
mortality data

Covariates:
HAQI, age, 

sex

Linear model for 
MI ratio ST-GPR

Covariates:
Hepatitis B prevalence
Hepatitis C prevalence

NASH prevalence
Alcohol (liters per capita)

Hepatitis B vaccination coverage
Cirrhosis due to liver cancer subtype proportions

Abbreviations: ICD: International classification of diseases; DB: database, ST-GPR: Space-time smoothing, Gaussian process regression, COD: Causes of death

YLLs

Unadjusted deaths 
by location/year/

age/sex due to 
specific cancer type

CodCorrect

Adjusted deaths by 
location/year/age/

sex for specific 
cancer type

Reference life table

11

2

3

3

4

4

5 6

7

888

9

10

Input data

Process

Results

Database Cause of death
Non-fatal
Disability weights
Burden estimation
Covariates

8

11

12

13 14 15

16

Scaling of 
proportions 

to 100%

17 18

 

 
Data 
The cause of death (COD) database contains multiple sources of cancer mortality data. These sources 
include vital registration, verbal autopsy, and cancer registry data. The cancer registry mortality estimates 
that are uploaded into the COD database stem from cancer registry incidence data that have been 
transformed to mortality estimates through the use of mortality-to-incidence ratios (MIR). 

 
Data-seeking processes 
Cancer mortality data in the cause of death database other than cancer registry data 
Sources for cancer mortality data other than cancer registry data are described in the COD database 
description (Appendix Section 2 in the Cause of Death Capstone Appendix).  
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Cancer registry data 
Cancer registry data were used from publicly available sources or provided by collaborators. We used all 
data from GBD 2016 and added registry data from Russia, Iran, Ethiopia, Norway, as well as the newly 
released CI5 XI (Cancer Registry in Five Continents). 
 
Inclusion and exclusion criteria 
Only population-based cancer registries were included, and only those that included all cancers (no 
specialty registries), data for all age groups, and data for both sexes. Pathology-based cancer registries 
were included if they had a defined population. Hospital-based cancer registries were excluded.  
Cancer registry data were excluded from either the final incidence data input or the MI model input if a 
more detailed source (eg, providing more detailed age or diagnostic groups) was available for the same 
population. Preference was given to registries with national coverage over those with only local coverage, 
except those from countries where the GBD study provides subnational estimates. 
Data were excluded if the coverage population was unknown.  
 
Bias of categories of input data 
Cancer registry data can be biased in multiple ways. A high proportion of ill-defined cancer cases in the 
registry data requires redistribution of these cases to other cancers, which introduces a potential for bias. 
Changes between coding systems can lead to artificial differences in disease estimates; however, we 
adjust for this bias by mapping the different coding systems to the GBD causes. Underreporting of 
cancers that require advanced diagnostic techniques (eg, leukaemia and brain, pancreatic, and liver 
cancer) can be an issue in cancer registries from low-income countries. On the other hand, 
misclassification of metastatic sites as primary cancer can lead to overestimation of cancer sites that are 
common sites for metastases, like brain or liver. Since many cancer registries are located in urban areas, 
the representativeness of the registry for the general population can also be problematic. The accuracy of 
mortality data reported in cancer registries usually depends on the quality of the vital registration system. 
If the vital registration system is incomplete or of poor quality, the mortality-to-incidence ratio can be 
biased to lower ratios. 

Data for liver cancer aetiology splits 
For GBD 2017, the aetiologies for liver cancer were expanded to include a separate aetiology of liver 
cancer due to non-alcoholic steatohepatitis (NASH). To find the proportion of liver cancer cases due to 
the five aetiology groups included in GBD (1. Liver cancer due to hepatitis B, 2. Liver cancer due to 
hepatitis C, 3. Liver cancer due to alcohol, 4. Liver cancer due to NASH, 5. Liver cancer due to other 
causes), a systematic literature search was performed in PubMed on 10/24/2016 using the following 
search string: “("liver neoplasms"[All Fields]  OR "HCC"[All Fields]  OR "liver cancer"[All Fields] OR 
"Carcinoma, Hepatocellular"[Mesh]) AND (("hepatitis B"[All Fields]  OR "Hepatitis B"[Mesh] OR "Hepatitis 
B virus"[Mesh] OR "Hepatitis B Antibodies"[Mesh] OR "Hepatitis B Antigens"[Mesh]) OR ("hepatitis C"[All 
Fields]  OR "Hepatitis C"[Mesh] OR "hepatitis C antibodies"[MESH] OR "Hepatitis C Antigens"[Mesh] OR 
"Hepacivirus"[Mesh]) OR  ("alcohol"[All Fields] OR "Alcohol Drinking"[Mesh] OR "Alcohol-Related 
Disorders"[Mesh] OR "Alcoholism"[Mesh] OR  "Alcohol-Induced Disorders"[Mesh])) NOT (animals[MeSH] 
NOT humans[MeSH])”. Also, studies not found through this search but included in the meta-analysis by 
de Martel and colleagues were included.10 We also included the study by Hong and colleagues after the 
authors provided us with additional data on the overlap in risk factors.11  
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Studies were included if the study population was representative of liver cancer population for the 
respective location. For each study, the proportions of liver cancer due to the five specific risk factors 
were calculated. Cases were considered to be due to NASH when the manuscript explicitly listed the 
aetiology to be NASH or non-alcoholic fatty liver disease (NAFLD). Cases where the aetiology was listed as 
“cryptogenic”, “idiopathic”, or “unknown” were included within the “other causes” category. In 
manuscripts where the aetiology for a case was not known but major categories could not be ruled out 
(for example, the study tested for hepatitis B and C but did not assess alcohol use), these cases were 
excluded from the numerator of the study (in other words, did not contribute a proportion to any 
aetiology). Remaining risk factors were included under a combined “other” group (for example, 
haemochromatosis, autoimmune hepatitis, Wilson’s disease, etc.). If multiple risk factors were reported 
for an individual patient, these were apportioned proportionally to the individual risk factors. 

Methods 
 
Steps of analysis and data transformation processes 
Cancer registry data went through multiple processing steps before integration with the COD database. 
First, the original data were transformed into standardised files, which included standardisation of 
format, categorisation, and registry names (#1 in flowchart).  
 
Second, some cancer registries report individual codes as well as aggregated totals (eg, C18, C19, and C20 
are reported individually but the aggregated group of C18-C20 [colorectal cancer] is also reported in the 
registry data). The data processing step “subtotal recalculation” (#2 in flowchart) verifies these totals and 
subtracts the values of any individual codes from the aggregates. 
 
In the third step (#3 in the flowchart), cancer registry incidence data and cancer registry mortality data 
are mapped to GBD causes. A different map is used for incidence and for mortality data because of the 
assumption that there are no deaths for certain cancers. One example is basal cell carcinoma of the skin. 
In the cancer registry incidence data, basal cell carcinoma is mapped to non-melanoma skin cancer (basal 
cell carcinoma). However, if basal cell skin cancer is recorded in the cancer registry mortality data, the 
deaths are instead mapped to non-melanoma skin cancer (squamous cell carcinoma) under the 
assumption that they were indeed misclassified squamous cell skin cancers. Other examples are benign or 
in situ neoplasms. Benign or in situ neoplasms found in the cancer registry incidence dataset were simply 
dropped from that dataset. The same neoplasms reported in a cancer registry mortality dataset were 
mapped to the respective invasive cancer (eg, melanoma in situ in the cancer registry incidence dataset 
was dropped from the dataset; melanoma in situ in the cancer registry mortality dataset was mapped to 
melanoma). 
 
In the fourth data processing step (#4 in the flowchart) cancer registry data were standardised to the GBD 
age groups. Age-specific incidence rates were generated using all datasets that include microdata, and 
datasets that report age groups up to 95+ years of age, while age-specific mortality rates were generated 
from the CoD data.  Age-specific proportions were then generated by applying the age-specific rates to a 
given registry population that required age-splitting to produce the expected number of cases/deaths for 
that registry by age. The expected number of cases/deaths for each sex, age, and cancer were then 
normalised to 1, creating final, age-specific proportions. These proportions were then applied to the total 
number of cases/deaths by sex and cancer to get the age-specific number of cases/deaths.  
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In the rare case that the cancer registry only contained data for both sexes combined, the now-age-
specific cases/deaths were split and reassigned to separate sexes using the same weights that are used 
for the age-splitting process. Starting from the expected number of deaths, proportions were generated 
by sex for each age (eg, if for ages 15 to 19 years old there are six expected deaths for males and four 
expected deaths for females, then 60% of the combined-sex deaths for ages 15-19 years would be 
assigned to males and the remaining 40% would be assigned to females).  
 
In the fifth step (#5 in the flowchart) data for cause entries that are aggregates of GBD causes were 
redistributed. Examples of these aggregated causes include some registries reporting ICD10 codes C00-
C14 together as “lip, oral cavity, and pharyngeal cancer.” These groups were broken down into sub-
causes that could be mapped to single GBD causes. In this example, those include lip and oral cavity 
cancer (C00-C08), nasopharyngeal cancer (C11), cancer of other parts of the pharynx (C09-C10, C12-C13), 
and “Malignant neoplasm of other and ill-defined sites in the lip, oral cavity, and pharynx” (C14).  To 
redistribute the data, weights were created using the same “rate-applied-to-population” method 
employed in age-sex splitting (see step four above). For the undefined code (C14 in the example) an 
“average all cancer” weight was used, which was generated by adding all cases from SEER/NORDCAN/CI5 
and dividing the total by the combined population. Then, proportions were generated by sub-cause for 
each aggregate cause as in the sex-splitting example above (see step four). The total number of cases 
from the aggregated group (C00-C14) was then recalculated for each subgroup and the undefined code 
(C14). C14 was then redistributed as a “garbage code” in step six. Distinct proportions were used for C44 
(non-melanoma skin cancer) and C46 (Kaposi’s sarcoma). Non-melanoma skin cancer processing is 
described under section “Input data and methodological summary for non-melanoma skin cancer 
(squamous-cell carcinoma).” C46 entries were redistributed as “other cancer,” and HIV using proportions 
described in Appendix Section 2 of the Cause of Death Capstone Appendix. 
In the sixth step (#6 in the flowchart) unspecified codes (“garbage codes”) were redistributed. 
Redistribution of cancer registry incidence and mortality data mirrored the process of the redistribution 
used in the cause of death database.  
 
In the seventh step (#7 in the flowchart) duplicate or redundant sources were removed from the 
processed cancer registry dataset. Duplicate sources were present if, for example, the cancer registry was 
part of the CI5 database but we also had data from the registry directly. Redundancies occurred and were 
removed as described in “Inclusion and Exclusion Criteria,” where more detailed data were available, or 
when national registry data could replace regionally representative data. From here, two parallel 
selection processes were run to generate input data for the MI models and to generate incidence for final 
mortality estimation. Higher priority was given to registry data from the most standardised source when 
creating the final incidence input, whereas for the MI model input only sources that reported incidence 
and mortality were used.  
 
In the eighth step (#8 in the flowchart) the processed incidence and mortality data from cancer registries 
were matched by cancer, age, sex, year, and location to generate MI ratios. These MI ratios were used as 
input for a three-step modelling approach using the updated GBD 2017 ST-GPR approach. with the 
Healthcare Access and Quality (HAQ) Index as a covariate in the linear step mixed effects model using a 
logit link function. This is different from GBD 2016, where we used Socio-demographic Index (SDI) as a 
predictive covariate. Predictions were made without the random effects. The ST-GPR model has three 
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main hyper-parameters that control for smoothing across time, age, and geography. The time adjustment 
parameter (𝜆𝜆) was set to 2, which aims to borrow strength from neighbouring time points (ie, the 
exposure in this year is highly correlated with exposure in the previous year but less so further back in 
time). The age adjustment parameter ω was set to 0.5, which borrows strength from data in neighbouring 
age groups. The space adjustment parameter 𝜉𝜉 was set to 0.95 in locations with data and to 0.5 in 
locations without data (the higher 𝜉𝜉 was applied when at least one age-sex group in the country of 
estimation had at least five unique data points. The lower 𝜉𝜉 was applied when estimating data-scarce 
countries). Zeta aims to borrow strength across the hierarchy of geographical locations.12 For the 
amplitude parameter in the Gaussian process regression we used 2, and for the scale we used a value of 
15. 
 
For GBD 2017 we slightly changed the data cleaning process and used HAQ rather than SDI to exclude 
data. For each cancer, MI ratios from locations in HAQ quintiles 1-4 were dropped if they were below the 
median of MI ratios from locations in HAQ quintile 5. We also dropped MI ratios from locations in HAQ 
quintiles 1-4 if the MI ratios were above the third quartile + 1.5 * IQR (inter-quartile range). We dropped 
all MIR that were based on less than 25 cases to avoid noise due to small numbers except for 
mesothelioma and acute lymphoid leukaemia, where we dropped MIR that were based on fewer than ten 
cases because of lower data availability for these two cancers. We also aggregated incidence and 
mortality to the youngest five-year age bin where we had at least 50 data points to avoid MIR predictions 
in young age groups that were based on few data points. The MIR in the age-bin that was used to 
aggregate MIR was used to backfill the MIR for younger age groups. 
 
Since MI ratios can be above 1, especially in older age groups and cancers with low cure rates, we used 
the 95th percentile of the cleaned dataset that only included MIR that were based on 50 or more cases, to 
cap the MIR input data. This “upper cap” was used to allow MIR over 1 but to constrain the MIR to a 
maximum level. To run the logit model, the input data were divided by the upper caps and model 
predictions after ST-GPR was rescaled by multiplying them by the upper caps. To constrain the model at 
the lower end, we used the fifth percentile of the cancer-specific cleaned MIR input data to replace all 
model predictions with this lower cap. 
 
Final MI ratios were matched with the cancer registry incidence dataset in the ninth step (#9 in the 
flowchart) to generate mortality estimates (Incidence * Mortality/Incidence = Mortality) (#10 in the 
flowchart). The final mortality estimates were then uploaded into the COD database (#11 in the 
flowchart). Cancer-specific mortality modelling then followed the general CODEm process. 
 
Liver cancer aetiology split models 
The proportion data found through the systematic literature review were used as input for five separate 
DisMod‐MR 2.1 models to determine the proportion of liver cancers due to the five subgroups for all 
locations, both sexes, and all age groups (step #16 in the flowchart). A study covariate was used for 
publications that only assessed liver cancer in a cirrhotic population. The reference, or “gold standard”, 
that was used for crosswalking was the compilation of all studies that assessed the aetiology of liver 
cancer in a general population. For liver cancer due to hepatitis C and hepatitis B, a prior value of 0 was 
set between age 0 and 0.01. For liver cancer due to alcohol, a prior value of 0 was set for ages 0 to 5 
years. For liver cancer due to hepatitis C, hepatitis C (IgG) seroprevalence was used as a covariate as well 
as a covariate for alcohol (litres per capita), hepatitis B prevalence (HBsAg seroprevalence), and 
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NASH/NAFLD prevalence, forcing a negative relationship between the alcohol, hepatitis B, hepatitis C, and 
NASH/NAFLD covariates and the outcome of liver cancer due to alcohol proportion. For liver cancer due 
to hepatitis B, seroprevalence of HBsAg was used as a covariate as well as a covariate for alcohol, 
hepatitis C IgG seroprevalence, NASH/NAFLD prevalence, and the population coverage of three-dose 
hepatitis B vaccination, forcing a negative relationship between these covariates and the outcome of liver 
cancer due to hepatitis B proportion. For liver cancer due to alcohol, alcohol (litres per capita) was used 
as a covariate as well as a covariate for proportion of alcohol abstainers, hepatitis B and hepatitis C 
seroprevalence, and NASH/NAFLD prevalence, forcing a negative relationship between the proportion of 
alcohol abstainers, NASH/NAFLD, and hepatitis B and hepatitis C covariates and the outcome of liver 
cancer due to alcohol proportion. For liver cancer due to NASH, NASH/NAFLD prevalence was used as a 
covariate as well as a covariate for obesity prevalence and mean body-mass index (BMI), forcing a positive 
relationship between these covariates and the outcome of liver cancer due to NASH proportion. All 
covariates used were modelled independently. To ensure consistency between cirrhosis and liver cancer 
estimates and to take advantage of the data for the respective other related cause (eg, liver cancer due to 
hepatitis C and the related cause cirrhosis due to hepatitis C), we generated covariates from the liver 
cancer proportion models that we used in the cirrhosis aetiology proportion models. We then created 
covariates from the cirrhosis aetiology proportion models and used those in the liver cancer aetiology 
models.  

Since the proportion models are run independently of each other, the final proportion models were 
scaled to sum to 100% within each age, sex, year, and location, by dividing each proportion by the sum of 
the five (step # 17). For the liver cancer subtype mortality estimates, we multiplied the parent cause “liver 
cancer” by the corresponding scaled proportions (step # 18). Single-cause estimates were adjusted to fit 
into the separately modelled all-cause mortality in the process CoDCorrect. 

 
Results 
Interpretation of results 
Cancer mortality estimates for GBD 2017 can differ from the GBD 2016 results for multiple reasons. 
Updated cancer mortality data were added from vital registration system data, verbal autopsy studies, as 
well as cancer registry incidence data. A new cause “Myelodysplastic, myeloproliferative, and other 
haematopoietic neoplasms” was added. In GBD 2016 all deaths due to this new cause were counted in 
the category “other neoplasms”. The mortality-to-incidence ratio estimation has been updated compared 
to GBD 2016, using HAQ rather than SDI in the data cleaning and modelling process, and the ST-GPR 
approach was also updated. Covariate inputs for the CODEm models were changed based on 
recommendations from collaborators. Covariates used in CODEm models were updated for GBD 2017. 

The other group producing country-level cancer mortality estimates is the International Agency for 
Research on Cancer (IARC) with their GLOBOCAN database. Significantly different methods between the 
GBD study and GLOBOCAN can lead to differences in results. Whereas estimates in GLOBOCAN are based 
on the assumption that there are “In theory, […] as many methods as countries,”13 the cancer estimation 
process for the GBD study follows a coherent, well-documented method for all cancers, which allows 
cross-validation of models as well as determination of uncertainty. Another major difference is the ability 
in the GBD study to adjust single-cause estimates to the all-cause mortality, which is being determined 
independently. This also allows us to adjust individual causes of death to the all-cause mortality envelope, 
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which permits us to correct for the underdiagnosis of cancer in countries with inadequate diagnostic 
resources. Redistribution of a fraction of undefined causes of death to certain cancers is another 
methodological advantage the GBD study has over GLOBOCAN, and estimates for cancer mortality can 
therefore differ substantially in countries with a large proportion of undefined causes of deaths in their 
vital registration data or a large proportion of undefined cancer cases in their cancer registry data. 
 
Limitations 

There are certain limitations to consider when interpreting the GBD cancer mortality estimates. First, 
even though every effort is made to include the most recently available data for each country, data-
seeking resources are not limitless and new data cannot always be accessed as soon as they are made 
available. It is therefore possible that the GBD study does not include all available data sources for cancer 
incidence or cancer mortality. Second, different redistribution methods can potentially change the cancer 
estimates substantially if the data sources used for the estimated location contain a large number of 
undefined causes; however, neglecting to account for these undefined deaths would likely introduce an 
even greater bias in the disease estimates. Third, using mortality-to-incidence ratios to transform cancer 
registry incidence data to mortality estimates requires accurate MIR. For GBD 2017 we have made further 
changes to the MIR estimation, but the method remains sensitive to underdiagnosis of cancer cases or 
underascertainment of cancer deaths. However, given that the majority of data used for the cancer 
mortality estimation come from vital registration data and not cancer registry data, this is not a major 
limitation. 

Non-melanoma skin cancer (squamous cell carcinoma) 
Data 
Data seeking processes 
Since squamous cell carcinomas are only very infrequently recorded by cancer registries, only vital 
registration system data were used as input for the squamous cell carcinoma mortality modelling.  

Inclusion and exclusion criteria 
Inclusion and exclusion criteria followed the same methods as described for the vital registration data 
sources (Appendix Section 2 of the Cause of Death Capstone Appendix). 

Bias of categories of input data 
The potential biases of the input data are the same as for other cancers (see above). 

Methods 
Overall methodological process 
Vital registration system data were used as input to model deaths due to squamous cell skin cancer. 

Steps of analysis and data transformation processes 
Since mortality estimates for non-melanoma skin cancer are only produced for squamous cell carcinoma 
under the assumption that basal cell carcinoma causes almost no deaths, all mortalities reported as “C44” 
or “173” were mapped to the “squamous cell carcinoma” GBD cause. 


Model selection 

209



The modelling strategy for non-melanoma skin cancer (squamous cell carcinoma) followed the general 
CODEm process. 

Model performance and sensitivity 
The modelling performance and sensitivity for non-melanoma skin cancer (squamous cell carcinoma) 
mirrored that of the general CODEm process. 

 
Uncertainty intervals 
Uncertainty was determined using standard CODEm methodology. 

Results 
Interpretation of results 
Non-melanoma skin cancer mortality estimates are not available from other sources. GLOBOCAN, for 
example, does not report deaths due to non-melanoma skin cancer. Even though the data availability for 
non-melanoma skin cancer is poor, the fact that it is the most common incident cancer, with rates 
expected to rise, makes it a necessity to include the disease in the GBD framework.  

Limitations 
Cancer registry data for non-melanoma skin cancer incidence have to be interpreted with caution due to 
a substantial amount of underreporting or rules that only the first non-melanoma skin cancer has to be 
registered. Many cancer registries therefore do not include non-melanoma skin cancers at all. However, 
information on whether registries capture NMSC or not is not consistently available. Therefore, no cancer 
registry data were used to estimate deaths due to squamous cell carcinoma of the skin. For vital 
registration data, we make the assumption that there are no deaths due to basal cell non-melanoma skin 
cancer; therefore, all deaths attributed to basal cell carcinoma were included instead as squamous cell 
carcinoma. 
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Covariates by cancer: 

Lip and oral cavity cancer                                                 Nasopharynx cancer                                                         Oesophageal cancer 

  

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: 
Mouth C 

+ 

Vegetables adjusted (g) − 

2 

Red meats adjusted (g) + 

Fruits adjusted (g) − 

Health system access 2 (unitless)* − 

Healthcare access and quality 
index  

− 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: 
Nasoph C 

+ 

Vegetables adjusted (g) − 

2 

Red meats adjusted (g) + 

Fruits adjusted (g) − 

Health system access 2 (unitless)* − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Log-transformed SEV scalar: Esophag C + 

Log-transformed age-standardized SEV 
scalar: Esophag C 

+ 

Mean BMI + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Fruits adjusted (g) - 

2 

Indoor air pollution (all cooking fuels) + 

Sanitation (proportion with access) − 

Vegetables adjusted (g) − 

Improved water source (proportion with 
access) 

− 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Other pharynx cancer                                                   Stomach cancer                                                                 Colon and rectum cancer 

 

  

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Smoking prevalence + 

Log-transformed SEV scalar: Oth 
Phar C 

+ 

Vegetables adjusted (g) − 

2 

Cumulative cigarettes (5 years) + 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Population density (over 1000 
ppl/sqkm, proportion) 

+ 

Population density (under 150 
ppl/sqkm, proportion) 

+ 

Healthcare access and quality 
index  

− 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Diet high in sodium + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: Stomach C + 

SEV unsafe water + 

SEV unsafe sanitation + 

2 

Vegetables adjusted (g) − 

Fruits adjusted (g) − 

Mean BMI + 

Sanitation (proportion with access) − 

Improved water source (proportion with 
access) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Mean BMI + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: Colorect C + 

Red meats adjusted (g) + 

2 

Milk adjusted (g) − 

Fruits adjusted (g) − 

Nuts seeds adjusted (g) − 

PUFA adjusted (percent) − 

Vegetables adjusted (g) − 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Diabetes age-specific prevalence 
(proportion) 

+ 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Liver cancer                                                                       Liver cancer, continued                                     Gallbladder and biliary tract cancer 

  

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

HIV age-standardised prevalence + 

Hepatitis B (HBsAg) seroprevalence + 

Hepatitis C (IgG) seroprevalence + 

Log-transformed SEV scalar: Liver C + 

2 

Hepatitis B 3-dose coverage 
(proportion) 

− 

Hepatitis B 3-dose coverage 
(proportion), lagged 5 years 

− 

Hepatitis B 3-dose coverage 
(proportion), lagged 10 years 

− 

Hepatitis B vaccine coverage 
(proportion), aged through time − 

Intravenous drug use (age-
standardised proportion) 

+ 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Diabetes age-specific prevalence 
(proportion) + 

Diabetes fasting plasma glucose 
(mmol/L) 

+ 

Level Covariate Direction 

2 

Mean BMI + 

Tobacco (cigarettes per capita) + 

Red meats adjusted (g) + 

Healthcare access and quality 
index  

− 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Log-transformed SEV scalar: 
Gallblad C 

+ 

Mean BMI + 

2 

Alcohol (litres per capita) + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Diabetes age-standardised 
prevalence (proportion) 

+ 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Pancreatic cancer                                                                Larynx cancer                                                                    Tracheal, bronchus, and lung cancer 

 

  

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Log-transformed SEV scalar: Pancreas C + 

Mean BMI + 

2 

Red meats adjusted (g) + 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Energy unadjusted (kcal) + 

Diabetes fasting plasma glucose 
(mmol/L) 

+ 

Diabetes age-standardised prevalence 
(proportion) 

+ 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 
Alcohol (litres per capita) + 

Log-transformed SEV scalar: Larynx C + 

2 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Asbestos consumption (metric tons per 
year per capita) 

+ 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Population density (over 1000 
ppl/sqkm, proportion) 

+ 

Population density (under 150 
ppl/sqkm, proportion) 

+ 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Cumulative cigarettes (5 yYears) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Secondhand smoke + 

Log-transformed SEV scalar: Lung C + 

Log-transformed age-standardised SEV 
scalar: Lung C 

+ 

2 

Indoor air pollution (all cooking fuels) + 

Outdoor air pollution (PM2.5) + 

Residential radon + 

Diabetes fasting plasma glucose 
(mmol/L) 

+ 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Malignant skin melanoma                                               Non-melanoma skin cancer                                             Breast cancer     

 

          

  

Level Covariate Direction 

1 Alcohol (litres per capita) + 

2 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Latitude under 15 (proportion) − 

Latitude 15 to 30 (proportion) 0 

Latitude 30 to 45 (proportion) − 

Latitude over 45 (proportion) − 

Healthcare access and quality 
index  

− 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Smoking prevalence + 

2 
Average latitude 0 

Healthcare access and quality index  − 

3 
Education (years per capita) 0 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Mean BMI + 

Log-transformed SEV scalar: Breast C + 

2 

Age-specific fertility rate − 

Total fertility rate − 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Secondhand smoke + 

Diabetes fasting plasma glucose 
(mmol/L) + 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

215



Cervical cancer                                                                       Uterine cancer                                                                  Prostate cancer 

 

  

Level Covariate Direction 

1 

 

 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

HIV age-standardised prevalence + 

2 

Age-specific fertility rate + 

Total fertility rate + 

Smoking prevalence + 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 
Log-transformed SEV scalar: Uterus C + 

Mean BMI + 

2 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Diabetes age-standardized prevalence 
(proportion) + 

Total fertility rate 0 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 Log-transformed SEV scalar: Prostate C + 

2 
Smoking prevalence 0 

Healthcare access and quality index  − 

3 
Education (years per capita) 0 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Ovarian cancer                                                                  Ovarian cancer, continued                                          Testicular cancer  

 

  

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Tobacco (cigarettes per capita) + 

Contraception (modern) prevalence 
(proportion) 

− 

Log-transformed SEV scalar: Ovary C + 

2 

Asbestos consumption (metric tons per 
year per capita) 

+ 

Smoking prevalence + 

Total fertility rate 0 

Energy unadjusted (kcal) + 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Mean BMI + 

Diabetes age-standardised prevalence 
(proportion) 

+ 

Diabetes fasting plasma glucose 
(mmol/L) 

+ 

Healthcare access and quality index  − 

3 

Education (years per capita) − 

LDI (I$ per capita) 0 

Socio-demographic Index 0 

Level Covariate Direction 

2 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Tobacco (cigarettes per capita) + 

Smoking prevalence + 

Fruits adjusted (g) − 

Vegetables adjusted (g) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Kidney cancer                                                                       Bladder cancer                                                                 Brain and nervous system cancer 

  

Level Covariate Direction 

1 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Mean BMI + 

Log-transformed SEV scalar: Kidney C + 

2 

Alcohol (litres per capita) + 

Diabetes age-standardised prevalence 
(proportion) 

+ 

Systolic blood pressure (mmHg) + 

Smoking prevalence + 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Schistosomiasis prevalence (proportion) + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Smoking prevalence + 

Log-transformed SEV scalar: Bladder C + 

2 

Alcohol (litres per capita) + 

Diabetes gasting plasma glucose 
(mmol/L) 

+ 

Vegetables adjusted (g) − 

Fruits adjusted (g) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Smoking prevalence + 

2 

Cholesterol (total, mean per capita) + 

Systolic blood pressure (mmHg) + 

Red meats adjusted (g) + 

Vegetables adjusted (g) − 

Fruits adjusted (g) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Thyroid cancer                                                                         Mesothelioma                                                                  Hodgkin’s lymphoma 

 

 

  

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Smoking prevalence + 

Log-transformed SEV scalar: Thyroid C + 

2 

Vegetables adjusted (g) − 

Fruits adjusted (g) − 

Red meats adjusted (g) + 

Tobacco (cigarettes per capita) + 

Mean BMI + 

Smoking prevalence + 

Sanitation (proportion with access) − 

Improved water source (proportion with 
access) 

− 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Asbestos consumption (metric tons per 
year per capita) 

+ 

Cumulative cigarettes (5 years) + 

Asbestos production (binary) + 

Smoking prevalence + 

Indoor air pollution (all cooking fuels) + 

Log-transformed SEV scalar: Mesothel + 

Log-transformed age-standardised SEV 
scalar: Mesothel 

+ 

2 

Asbestos production (kg) per capita + 

Gold production (binary) + 

Gold production (kg) per capita + 

Population density (over 1000 
ppl/sqkm, proportion) 

+ 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

2 Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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Non-Hodgkin lymphoma                                                  Multiple myeloma                                                            Leukaemia  

  

Level Covariate Direction 

2 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Alcohol (litres per capita) + 

Smoking prevalence + 

Mean BMI + 

Healthcare access and quality index  − 

3 
Total fertility rate 0 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

 

 

Alcohol (litres per capita) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

2 

Vegetables adjusted (g) − 

Fruits adjusted (g) − 

Red meats adjusted (g) + 

Tobacco (cigarettes per capita) + 

Mean BMI + 

Sanitation (proportion with access) − 

Improved water source (proportion with 
access) − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 

Log-transformed age-standardised SEV 
scalar: Leukaemia 

+ 

Log-transformed SEV scalar: Leukaemia + 

2 

Alcohol (litres per capita) + 

Mean BMI + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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 Myelodysplastic, myeloproliferative, other haematopoietic neoplasms    Other malignant cancers                                                   Other neoplasms                                                               

        

                                     

 

 

 

  

Level Covariate Direction 

1 

Log-transformed age-standardised SEV 
scalar: Leukaemia + 

Log-transformed SEV scalar: Leukaemia + 

2 

Alcohol (litres per capita) + 

Mean BMI + 

Cumulative cigarettes (5 years) + 

Cumulative cigarettes (10 years) + 

Cumulative cigarettes (15 years) + 

Cumulative cigarettes (20 years) + 

Smoking prevalence + 

Tobacco (cigarettes per capita) + 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

2 Healthcare access and quality index  − 

3 
Education (years per capita) - 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 

Level Covariate Direction 

1 
Smoking prevalence + 

Tobacco (cigarettes per capita) + 

2 

Vegetables adjusted (g) − 

Fruits adjusted (g) − 

Nuts seeds adjusted (g) − 

PUFA adjusted (percent) − 

Mean BMI − 

Healthcare access and quality index  − 

3 
Education (years per capita) − 

LDI (I$ per capita) 0 

 Socio-demographic Index 0 
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3.4.1: Diabetes Mellitus 
 

Diabetes mellitus mortality was estimated for overall diabetes mellitus, diabetes mellitus type 1, and 
diabetes mellitus type 2 in GBD 2017. We included neonatal diabetes with type 1 diabetes and gestational 
diabetes with type 2 diabetes.  

 

Overall Diabetes Mellitus 

YLLs

Vital registration 
data

Verbal autopsy data

Garbage code 
redistribution

CODEm models
Ages 0-14 years

Unadjusted deaths 
by location/year/

age/sex due to 
Diabetes mellitus

CodCorrect

Location-level 
covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise 
reductionICD mapping Age-sex 

splitting
Standardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Surveillance

CODEm models
Ages 15+ years

Location-level 
covariates

 

Input data 
Overall diabetes mellitus mortality was estimated using deaths directly attributed to diabetes mellitus. 
We used verbal autopsy and vital registration data as inputs into the model.  

Verbal autopsy data: We outliered data points from sources where there were zero deaths estimated in 
an age group as this was not realistic for deaths due to diabetes and we determined that these data 
sources were unreliable. 

Vital registration data: We outliered all data from the India Medical Certification of Cause of Death report 
since the source of the data was unreliable according to expert opinion. We also outliered ICD9BTL data 
points that were inconsistent with the rest of the data series and created unlikely time trends. 
 

Modelling strategy  
The Cause of Death Ensemble model (CODEm) was used for deaths due to diabetes mellitus estimation.  

In the overall diabetes mellitus model, we used two models to estimate overall diabetes deaths with 
different age restrictions. This is because deaths in younger age groups are almost exclusively due to type 
1 diabetes, while deaths in older ages are primarily due to type 2 diabetes. This allowed us to select 
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predictive covariates that are specific to the pathophysiology of diabetes type 1 and type 2. We set the 
younger age model from 0-14 years and the older age model from 15-95+ years. We determined the age 
threshold based on evidence that the onset age of diabetes type 2 is occurring at younger ages.  

Covariate selection 
The following are the covariates included in the model. We were able to set an expected direction on 
each covariate. This requires that the covariate selected for the model must have the directional 
relationship with diabetes mellitus deaths.  

Model Level Covariate Direction 
0-14 years 1 Healthcare access and quality index - 

3 Education years per capita - 
2 Age-standardised fertility rate + 
2 Latitude + 
2 Age-standardised underweight (weight-for-

age) summary exposure variable 
- 

2 Percentage of births occurring in women >35 
years old 

+ 

2 Percentage of births occurring in women >40 
years old 

+ 

3 Socio-demographic Index - 
2 Age-standardised stunting (height-for-age) 

summary exposure variable 
- 

2 Mean birth weight - 
15 + model 1 Age-standardised mean fasting plasma 

glucose (mmol/L) 
+ 

1 Age-standardised prevalence of diabetes + 
3 Education years per capita +/- 
3 Lag-distributed income per capita +/- 
1 Mean BMI + 
2 Mean cholesterol +/- 
2 Mean systolic blood pressure +/- 
1 Prevalence of obesity + 
2 Energy-adjusted grams of fruits +/- 
2 Energy-adjusted grams of sugar + 
2 Energy-adjusted grams of vegetables +/- 
3 Healthcare access and quality index +/- 
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Diabetes mellitus Type 1 and Type 2 
 

Diabetes mellitus Type 1 

YLLs

ICD-10 Vital 
registration data

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
Diabetes mellitus

CodCorrect

Location-level 
covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise 
reductionICD mapping Age-sex 

splitting
Standardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Regression to 
distribute 

unspecified Diabetes 
mellitus

Unspecified 
Diabetics that 

are allocated to 
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location/year
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Diabetes mellitus Type 2 
 

YLLs

ICD-10 Vital 
registration data

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
Diabetes mellitus

CodCorrect

Location-level 
covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise 
reductionICD mapping Age-sex 

splitting
Standardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Regression to 
distribute 

unspecified Diabetes 
mellitus

Unspecified 
Diabetics that 

are allocated to 
Type 2 Dm by 

age/sex/
location/year

Proportion of 
unspecified 

Diabetics that are 
Type 2 Dm by age/
sex/year/location

ICD-10 Vital 
registration data 

coded as unspecified 
Dm

 

Input data 
Type-specific diabetes mellitus mortality was estimated using deaths from vital registration sources in 
ICD-10 codes only. Diabetes type-specific information was not available in ICD-9 codes or deaths 
determined by verbal autopsy.  

 

Modelling strategy  
The Cause of Death Ensemble model (CODEm) was used for deaths due to diabetes mellitus estimation.  

 

Deaths in younger age groups are almost exclusively due to type 1 diabetes, while deaths in older ages 
are primarily due to type 2 diabetes. To account for this age pattern, we set the age range of the diabetes 
type 1 model to 0-95+ years and the age range of the diabetes type 2 model to 15-95+ years. We used 
the same covariates in the diabetes type 1 model and diabetes type 2 model as the 0-14 year and 15-95+ 
year in the overall diabetes models, respectively.  

 

There were two unique data manipulation steps that occurred in order to prepare the data as part of the 
modelling process. 

1. We assumed that all deaths <15 years were due to type 1 regardless of the ICD-10 code assigned 
to the death. We imposed 100% attribution of diabetes mellitus deaths in <15 years to type 1 
diabetes mellitus. 
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2. ICD-10 diabetes data were reported as type 1, type 2, or unspecified. We developed a regression 
to estimate the fraction of unspecified diabetes mellitus that was type 1 and type 2. Since there is 
a separate regression to estimate the proportion of type 1 diabetes mellitus and type 2 diabetes 
mellitus, we scaled the predicted proportions to one. These scaled proportions were then applied 
to number of deaths coded to unspecified diabetes in each location, year, sex where ICD-10 data 
was reported. 

 

Regression equation 

Type 1: 

logit �
number type 1 DM
number total DM

�~logit �
number unspecified DM

number total DM
� + β1age group

+ β2age-st prev obesity*age group + age-st prev obesity 

 

Type 2: 

logit �
number type 2 DM
number total DM

�~logit �
number unspecified DM

number total DM
� + β1age group

+ β2age-st prev obesity*age group + age-st prev obesit 

 

 

Covariate selection 

The following are the covariates included in the model. We were able to set an expected direction on 
each covariate. This requires that the covariate selected for the model must have the directional 
relationship with diabetes mellitus deaths.  
 

Model Level Covariate Direction 
Type 1 1 Healthcare access and quality index - 

3 Education years per capita - 
2 Age-standardised fertility rate + 
2 Latitude + 
2 Age-standardised underweight (weight-for-

age) summary exposure variable 
- 

2 Percentage of births occurring in women >35 
years old 

+ 

2 Percentage of births occurring in women >40 
years old 

+ 

3 Socio-demographic Index - 
2 Age-standardised stunting (height-for-age) 

summary exposure variable 
- 

2 Mean birth weight - 
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Type 2 1 Age-standardised mean fasting plasma 
glucose (mmol/L) 

+ 

1 Age-standardised prevalence of diabetes + 
3 Education years per capita +/- 
3 Lag-distributed income per capita +/- 
1 Mean BMI + 
2 Mean cholesterol +/- 
2 Mean systolic blood pressure +/- 
1 Prevalence of obesity + 
2 Energy-adjusted grams of fruits +/- 
2 Energy-adjusted grams of sugar + 
2 Energy-adjusted grams of vegetables +/- 
3 Healthcare access and quality index +/- 
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Chronic Kidney Disease  

Vital registration 
data

CKD YLLs

Verbal autopsy data

Standardize input 
data ICD mapping Age-sex splitting Garbage code 

redistribtuion Nosie reduction Cause of death 
database

CODEm modelsCountry 
covariates

Unadjusted deaths by 
location/year/age/sex 

due to CKD
CodCorrect Adjusted deaths by 

location/year/age/sex 

Reference life table

Input data

ProcessResults

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Input data  

Vital registration and verbal autopsy data were used to model mortality due to chronic kidney disease. 
Outliers were identified by systematic examination of data points for all location-years. Data were 
standardised and mapped according to the GBD causes of death ICD mapping method. These data were 
then age-sex split, and appropriate redistribution of garbage code data was performed. Data points that 
violated well-established age or time trends or that resulted in extremely high or low cause fractions were 
determined to be outliers. Deaths due to congenital kidney anomalies (cystic kidney disease and reflux 
hydronephrosis) were attributed to chronic kidney disease, marking a change from GBD 2015, when 
these deaths were assigned to congenital anomalies.  

Modelling strategy  
The estimation strategy used for fatal chronic kidney disease is largely similar to methods used in GBD 
2016. A standard CODEm model with location-level covariates was used to model deaths due to chronic 
kidney disease. Iterations of models were assessed at the location/year/age group/sex level to determine 
whether data points merited exclusion via outliering. Unadjusted death estimates were adjusted using 
CoDCorrect to produce final estimates of YLLs. The covariates used are displayed below.   

Level Covariate Direction 

1 

Diabetes fasting plasma glucose (mmol/L) + 
Diabetes age-standardised prevalence (proportion) + 
Mean systolic blood pressure (mmHg) + 
Mean BMI + 
Healthcare access and quality index  − 

2 

Mean cholesterol + 
Total calories (kcal per capita) − 
Red meat (kcal per capita)  0 
Whole grains (kcal per capita) 0 
Animal fat (kcal per capita) 0 

3 
Socio-demographic Index  0 
Education (years per capita) − 
Log LDI ($I per capita)  − 
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3.4.1: Chronic Respiratory Diseases 

YLLs for 4 CKD 
subtypes: diabetes 

mellitus, 
hypertension, 

glomerulonephritis, 
other 

CodCorrect
Adjusted deaths by 

CKD subtype/location/
year/age/sex 

Reference life table

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

Covariates

Input Data

ESRD registry 
proportion data by 

CKD subtype
Nonfatal database Dismod-MR 2.1

Proportion of CKD 
due to other causes 

Proportion of CKD 
due to diabetes 

mellitus 

Proportion of CKD 
due to hypertension 

Proportion of CKD 
due to 

glomerulonephritis

Adjust proportions 
to sum to 1 at draw 

level 

Apply proportions to 
CKD CODEm results

Unadjusted deaths by 
location/year/age/sex 

due to CKD due to 
other causes 

Unadjusted deaths by 
location/year/age/sex 

due to CKD due to 
diabetes mellitus type 2

Unadjusted deaths by 
location/year/age/sex 

due to CKD due to 
hypertension 

Unadjusted deaths by 
location/year/age/sex 

due to CKD due to 
glomerulonephritis 

Unadjusted deaths by 
location/year/age/sex 

due to CKD due to 
diabetes mellitus type 1 

  

Input data  
We estimated deaths due to five subtypes of chronic kidney disease: diabetes mellitus (DM) type 1, 
diabetes mellitus (DM) type 2, hypertension, glomerulonephritis, and other causes. Data from end-stage 
renal disease registries were used to inform estimates of proportion of CKD mortality attributable to each 
CKD subtype. Age-specific data on the proportion of ESRD by subtype was available from the United 
States, Australia, New Zealand, Nigeria, and Russia. Given the geographic spread in availability of age-
specific proportion data, input data were not age-split, marking a change from GBD 2016.  

Vital registration (VR) data were excluded from estimates, as aetiology coding in VR sources was 
considered highly variable and inconsistent between countries.  

Modelling strategy  
We ran DisMod-MR 2.1 models including diabetes prevalence and mean systolic blood pressure as 
country-level covariates to obtain estimates of proportions for each subtype by location, year, age, and 
sex. Data for CKD due to overall DM were more widely available than data by type of DM. In order to 
make use of all available data, we modelled the proportion of CKD due to overall DM, DM type 1, and DM 
type 2. Proportion of CKD due to DM type 1 and DM type 2 were then scaled to sum to the proportion of 
overall DM at the gender, age, and country-matched level. The results from all subtype-specific models 
were adjusted so that estimates across the subtypes equaled 1 at each of 1,000 draws. These adjusted 
proportions were applied to the parent CKD CODEm model. 
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Model Covariate Value  Exponentiated 
CKD proportion due 
to diabetes mellitus 

Diabetes age-
standardised 
prevalence  

0.49 
(0.36–0.61) 

1.63 
(1.44–1.84) 

CKD proportion due 
to hypertension 

Mean systolic 
blood pressure  

 0.30 
(0.010–1.05) 

1.35  
(1.01–2.86) 
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3.4.2, 3.6.1, 3.9.3, 16.1.1 Injuries SDG Capstone Appendix 
 

YLLs

Vital registration 
data

Verbal autopsy data Garbage code 
redistribution

CODEm models 
for all injury 

causes

Unadjusted deaths 
by location/year/

age/sex
CodCorrect

Location-level 
covariates

Input data

Process

Results

Database

Fatal discontinuity 
estimation

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Surveillance data

Police record data1

Survey data

1Police record data uniquely used for road injury and interpersonal violence

2Motor vehicle road injuries; other transport injuries; fire, heat, and hot 
substances; poisonings; and other exposure to mechanical forces

3Exposure to forces of nature, terrorism/conflict, executions/police conflict

Fatal 
discontinuity 
estimates for 
select injury 

causes2

Fatal discontinuity 
estimates for 

forces of  nature, 
conflict/terrorism, 
and executions and 

police conflict3

 

Indicator definition 
This modeling strategy encompassed the indicator associated with mortality due to self-harm (3.4.2), 
road injuries (3.6.1), unintentional poisonings (3.9.3), and interpersonal violence (16.1.1). 

Indicator 3.4.2 
As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.4, reduce by one third premature mortality from NCDs through prevention and treatment and promote 
mental health and well-being, is measured using SDG Indicator 3.4.2, deaths due to self-harm per 
100,000. 

Indicator 3.6.1 
As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.6, by 2030, halve the number of global deaths and injuries from road traffic accidents, is measured 
using SDG Indicator 3.6.1, deaths due to road injuries per 100,000. 

Indicator 3.9.3 
As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.9, by 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, 
water and soil pollution and contamination, is measured using SDG Indicator 3.9.3, deaths due to 
unintentional poisoning per 100,000. 

Indicator 16.1.1 
As a component of SDG Goal 16. Promote peaceful and inclusive societies for sustainable development, 
provide access to justice for all and build effective, accountable and inclusive institutions at all levels, SDG 
Target 16.1, by 2030, significantly reduce all forms of violence and related death rates everywhere, is 
measured using SDG Indicator 16.1.1, deaths due to interpersonal violence per 100,000. 
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Input data 
In GBD 2017, we estimated injury mortality from vital registration, verbal autopsy, mortality surveillance, 
censuses, surveys, and police record data. Police and crime reports were data sources uniquely used for 
the estimation of deaths from road traffic injury and interpersonal violence. The police data were 
collected from published studies, national agencies, and institutional surveys such as the United Nations 
Crime Trends Survey and the WHO Global Status Report on Road Safety Survey. For countries with vital 
registration data we did not use police records, except if the recorded number of road injury and 
interpersonal violence deaths from police records exceeded that in the vital registration.  

Infrequently, data points were marked as outliers. Outlier criteria excluded data points that (1) were 
implausibly high or low relative to global or regional patterns, (2) substantially conflicted with established 
age or temporal patterns, or (3) significantly conflicted with other data sources conducted from the same 
locations or locations with similar characteristics (ie, Socio-demographic Index).  

Modelling strategy 
Overview 
In GBD 2017, the standard CODEm modelling approach was applied to estimate deaths due to all causes 
of injury, excluding “Exposure to forces of nature,” and “Conflict and terrorism”. These causes were 
modelled solely outside of the CODEm process as fatal discontinuities estimation. 

Fatal discontinuity was estimated for ten injury causes also modelled in CODEm. These causes included 
“Road injuries”, “Motor vehicle road injuries”, “Other transport injuries”, “Fire, heat, and hot substances”, 
“Poisonings”, “Environmental exposure to heat and cold “, “Other unintentional injuries”, “Interpersonal 
violence”, “Other exposure to mechanical forces”, and “Executions and police conflict”. Final fatal 
discontinuity estimations for these causes were merged with CODEm results post-CoDCorrect to produce 
final cause of death results. 

Refer to the table at the end of this section for a complete list of the cause-of-injury categories, modelling 
strategies, and covariate changes from GBD 2016. 

GBD injury codes and categories 
The International Classification of Diseases (ICD) was used to classify injuries. In GBD, injury incidence and 
death are defined as ICD-9 codes E000-E999 and ICD-10 chapters V to Y. There is one exception: deaths 
and cases of alcohol poisoning and drug overdoses are classified under drug and alcohol use disorders. In 
GBD 2017, injury causes were organized into 28 mutually exclusive and collectively exhaustive external 
cause-of-injury categories. For GBD 2017, “Poisoning” was differentiated into “Poisoning by carbon 
monoxide,” and “Poisoning by other”, and “Unintentional suffocation” was removed as its ICD codes were 
added to the “Pulmonary aspiration and foreign body in airway” cause. 

Preparation of data  
The preparation of cause of death data includes age splitting, age‐sex splitting, smoothing, and outlier 
detection. These steps are described in detail by Naghavi and colleagues and Lozano and colleagues.1,2,3 
The concept of “garbage codes” and redistribution of these codes was proposed in GBD 1990.4 Garbage 
codes are causes of death that should not be identified as specific underlying causes of death but have 
been entered as the underlying cause of death on death certificates. A classic example of these types of 
codes in injuries chapters are “Exposure to unspecified factor” (X59 in ICD-10 and E887 in ICD-9) and all 
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undetermined intent codes (Y10-Y34 in ICD-10 and E980-E988 in ICD-9). Other examples of garbage 
codes in injuries are the coding of an injury death to intermediate codes like septicaemia or peritonitis or 
as an ill-defined and unknown cause of mortality (R99). Approximately 2% of total deaths in countries 
with vital registration data are assigned to these three injury garbage code categories. 

Splitting into sublevel causes 
In countries with non-detail ICD code data, cause-of-injury categories were proportionally split into 
sublevel cause-of-injury categories. The sublevel cause-of-injury causes were created in the CoDCorrect 
process. One of the countries with non-detail ICD code data is South Africa, and in GBD 2013 the 
proportions of sublevel cause-of-injury were based on vital registration data. For GBD iterations of 2015, 
2016, and 2017, the proportions were based on post-mortem investigation of injury deaths as described 
in the paper by Matzopoulos and colleagues 2015.5 

Limitations and model assumptions 
We added police data for road injuries and interpersonal violence to help predict level and age patterns in 
countries with sparse or absent cause of death data even though we know from countries with near-
complete vital registration data that police records tend to underestimate the true level of deaths. 
However, we applied police data estimates in instances where reported deaths were higher than vital 
registration numbers. 

Covariates 
The following covariates were included.  

Transport injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Vehicles – 2 wheels fraction (proportion) + 
1 Vehicles – 2+4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 LDI (I$ per capita) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 Rainfall quintile 5 (proportion) + 
3 Socio-demographic Index -    

Road injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Road Inj + 
1 Vehicles – 2 wheels (per capita) + 
1 Vehicles – 2 wheels fraction (proportion) + 
1 Vehicles – 2+4 wheels (per capita) + 
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1 Vehicles – 4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 Population 15 to 30 (proportion) + 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index -    

Pedestrian road injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Pedest + 
1 Vehicles – 2 wheels fraction (proportion) + 
1 Vehicles – 2+4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 LDI (I$ per capita) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 Rainfall quintile 5 (proportion) + 
3 Socio-demographic Index -    

Cyclist road injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Cyclist + 
1 Vehicles – 2 wheels fraction (proportion) + 
1 Vehicles – 2+4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 LDI (I$ per capita) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 Socio-demographic Index 0    

Motorcyclist road injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
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1 Log-transformed SEV scalar: Mot Cyc + 
1 Vehicles – 2 wheels (per capita) + 
2 Healthcare access and quality index - 
2 LDI (I$ per capita) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 Rainfall quintile 5 (proportion) + 
3 Socio-demographic Index 0    

Motor vehicle road injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Mot Veh + 
1 Vehicles – 4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Rainfall quintile 5 (proportion) + 
3 Socio-demographic Index 0    

Other road injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Oth Road + 
1 Vehicles – 2 wheels fraction (proportion) + 
1 Vehicles – 2+4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 LDI (I$ per capita) 0 
3 Rainfall quintile 5 (proportion) + 
3 Socio-demographic Index -    

Other transport injuries 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Oth Trans + 
1 Vehicles – 2 wheels fraction (proportion) + 
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1 Vehicles – 2+4 wheels (per capita) + 
2 Healthcare access and quality index - 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 LDI (I$ per capita) + 
3 Rainfall quintile 5 (proportion) + 
3 Socio-demographic Index 0    

Unintentional injuries 
 

Level Covariate Direction 
1 Cumulative cigarettes (5 Years) + 
1 Diabetes fasting plasma glucose (mmol/L) + 
1 Health system access 2 (unitless) - 
1 Indoor air pollution (all cooking fuels) + 
1 Smoking prevalence + 
1 Underweight (proportion <2SD weight for age, <5 years) + 
2 Alcohol (litres per capita) + 
2 Population density (500-1000 ppl/sqkm, proportion) + 
2 Population density (over 1000 ppl/sqkm, proportion) + 
3 Education (years per capita) - 
3 LDI (I$ per capita) -    

Falls 
  

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Falls + 
2 Healthcare access and quality index - 
2 Milk adjusted (g) - 
3 Elevation over 1500m (proportion) + 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Drowning 
  

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Coastal population within 10km (proportion) + 
1 Landlocked nation (binary) - 
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1 Log-transformed SEV scalar: Drown + 
1 Rainfall quintile 1 (proportion) - 
1 Rainfall quintile 5 (proportion) + 
2 Elevation under 100m (proportion) + 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index -    

Fire, heat, and hot substances 
 

Level Covariate Direction 
1 Log-transformed SEV scalar: Fire + 
2 Alcohol (litres per capita) + 
2 Healthcare access and quality index - 
2 Indoor air pollution (all cooking fuels) + 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Tobacco (cigarettes per capita) + 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index -    

Poisonings 
 

Level Covariate Direction 
1 Log-transformed SEV scalar: Poison + 
1 Opium cultivation (binary) + 
2 Healthcare access and quality index - 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Population density (under 150 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index -    

Poisoning by carbon monoxide 
 

Level Covariate Direction 
3 Education (years per capita) - 
3 Healthcare access and quality index - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Poisoning by other means 
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Level Covariate Direction 
3 Education (years per capita) - 
3 Healthcare access and quality index - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Exposure to mechanical forces 
 

Level Covariate Direction 
2 Alcohol (litres per capita) + 
2 Healthcare access and quality index - 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Population density (under 150 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index -    

Unintentional firearm injuries 
 

Level Covariate Direction 
1 Log-transformed SEV scalar: Mech Gun + 
2 Alcohol (litres per capita) + 
2 Health system access (unitless) - 
2 Healthcare access and quality index - 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0 
3 Socio-demographic Index -    

Other exposure to mechanical forces 
 

Level Covariate Direction 
1 Log-transformed SEV scalar: Oth Mech + 
2 Alcohol (litres per capita) + 
2 Health system access (unitless) - 
2 Healthcare access and quality index - 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Population density (under 150 ppl/sqkm, proportion) 0 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index - 
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Adverse effects of medical treatment 
 

Level Covariate Direction 
2 Healthcare access and quality index 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Animal contact 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Animal + 
2 Healthcare access and quality index - 
2 Population 15 to 30 (proportion) + 
3 Education (years per capita) - 
3 Elevation over 1500m (proportion) 0 
3 Elevation under 100m (proportion) 0 
3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0 
3 Socio-demographic Index -    

Venomous animal contact 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Venom + 
2 Healthcare access and quality index - 
3 Education (years per capita) - 
3 Elevation over 1500m (proportion) 0 
3 Elevation under 100m (proportion) 0 
3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0 
3 Socio-demographic Index -    

Non-venomous animal contact 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Non Ven + 
2 Healthcare access and quality index - 
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3 Alcohol (litres per capita) + 
3 Education (years per capita) - 
3 Elevation over 1500m (proportion) 0 
3 Elevation under 100m (proportion) 0 
3 Healthcare access and quality index - 
3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0 
3 Socio-demographic Index -    

Foreign body 
 

Level Covariate Direction 
1 Education (years per capita) + 
1 Indoor air pollution (all cooking fuels) + 
1 LDI (I$ per capita) + 
1 Population density (over 1000 ppl/sqkm, proportion) + 
1 Population over 65 (proportion) + 
2 Healthcare access and quality index - 
3 Socio-demographic Index 0    

Pulmonary aspiration and foreign body in airway 
 

Level Covariate Direction 
1 Log-transformed SEV scalar: F Body Asp + 
2 Alcohol (litres per capita) + 
2 Alcohol binge drinker proportion, age-standardised + 
2 Healthcare access and quality index - 
2 Mean BMI + 
3 Education (years per capita) - 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Foreign body in other body part 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Oth F Body + 
2 Healthcare access and quality index - 
3 Education (years per capita) - 
3 Elevation Over 1500m (proportion) 0 
3 Elevation Under 100m (proportion) 0 
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3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0 
3 Socio-demographic Index -    

Other unintentional injuries 
 

Level Covariate Direction 
1 Alcohol (liters per capita) + 
1 Log-transformed SEV scalar: Oth Unint + 
1 Vehicles – 2 wheels (per capita) + 
1 Vehicles – 4 wheels (per capita) 0 
2 Healthcare access and quality index - 
3 Education (years per capita) - 
3 Elevation over 1500m (proportion) 0 
3 Elevation under 100m (proportion) 0 
3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0 
3 Socio-demographic Index 0    

Self-harm and interpersonal violence 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Healthcare access and quality index + 
1 Log-transformed SEV scalar: Oth Unint + 
3 Education (years per capita) - 
3 Elevation over 1500m (proportion) 0 
3 Elevation under 100m (proportion) 0 
3 LDI (I$ per capita) 0 
3 Population density (over 1000 ppl/sqkm, proportion) 0 
3 Population density (under 150 ppl/sqkm, proportion) 0    

Self-harm 
  

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Self Harm + 
1 Major depressive disorder + 
1 Non-partner lifetime prevalence of sexual violence (female-only) + 
1 Risk of self-harm due to major depressive disorder + 
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2 Healthcare access and quality index - 
2 Muslim religion (proportion of population) - 
2 Population density (150-300 ppl/sqkm, proportion) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Population density (under 150 ppl/sqkm, proportion) 0 
2 Religion (binary, >50% Muslim) - 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Self-harm by firearm 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Self Harm + 
1 Major depressive disorder + 
2 Healthcare access and quality index - 
2 Population density (150-300 ppl/sqkm, proportion) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Population density (under 150 ppl/sqkm, proportion) 0 
2 Religion (binary, >50% Muslim) - 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Self-harm by other specified means 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Self Harm + 
1 Major depressive disorder + 
2 Healthcare access and quality index - 
2 Population density (150-300 ppl/sqkm, proportion) 0 
2 Population density (300-500 ppl/sqkm, proportion) 0 
2 Population density (500-1000 ppl/sqkm, proportion) 0 
2 Population density (over 1000 ppl/sqkm, proportion) 0 
2 Population density (under 150 ppl/sqkm, proportion) 0 
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2 Religion (binary, >50% Muslim) - 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Interpersonal violence 
 

Level Covariate Direction 
1 Alcohol (liters per capita) + 
1 Log-transformed SEV scalar: Violence + 
2 Healthcare access and quality index - 
2 Opium cultivation (binary) + 
2 Population density (over 1000 ppl/sqkm, proportion) + 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Assault by firearm 
 

Level Covariate Direction 
1 Alcohol (liters per capita) + 
1 Log-transformed SEV scalar: Viol Gun + 
2 Healthcare access and quality index - 
2 Opium cultivation (binary) + 
2 Population density (over 1000 ppl/sqkm, proportion) + 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Assault by sharp object 
 

Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Viol Knife + 
2 Healthcare access and quality index - 
2 Opium cultivation (binary) + 
2 Population density (over 1000 ppl/sqkm, proportion) + 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Assault by other means 
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Level Covariate Direction 
1 Alcohol (litres per capita) + 
1 Log-transformed SEV scalar: Oth Viol + 
2 Healthcare access and quality index - 
2 Opium cultivation (binary) + 
2 Population density (over 1000 ppl/sqkm, proportion) + 
3 Education (years per capita) 0 
3 LDI (I$ per capita) 0 
3 Socio-demographic Index 0    

Environmental heat and cold exposure 
 

Level Covariate Direction 
2 Healthcare access and quality index - 
3 90th percentile climatic temperature in the given country-year 0 
3 Education (years per capita) - 
3 Elevation 500 to 1500m (proportion) 0 
3 Elevation over 1500m (proportion) 0 
3 LDI (I$ per capita) 0 
3 Population fensity (150-300 ppl/sqkm, proportion) 0 
3 Population-weighted mean temperature 0 
3 Rainfall (quintiles 4-5) 0 
3 Sanitation (proportion with access) 0 
3 Socio-demographic Index - 

 

Table  – Injury cause list   

ID Cause Modelling strategy Covariate changes from 
GBD 2016 

1 Transport injuries CODEm  

1.1 Road injuries CODEm and fatal discontinuity estimation  

1.1.1 Pedestrian road injuries CODEm  

1.1.2 Cyclist road injuries CODEm  

1.1.3 Motorcyclist road injuries CODEm  

1.1.4 Motor vehicle road injuries CODEm and fatal discontinuity estimation  

1.1.5 Other road injuries CODEm  

1.2 Other transport injuries CODEm and fatal discontinuity estimation  
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Table  – Injury cause list   

ID Cause Modelling strategy Covariate changes from 
GBD 2016 

2 Unintentional injuries CODEm  

2.1 Falls CODEm  

2.2 Drowning CODEm  

2.3 Fire, heat, and hot substances CODEm and fatal discontinuity estimation  

2.4 Poisonings CODEm and fatal discontinuity estimation  

2.4.1 Poisoning by carbon monoxide CODEm Same covariates used 
as Poisoning in GBD 
2016 

2.4.2 Poisoning by other means CODEm Same covariates used 
as Poisoning in GBD 
2016 

2.5 Exposure to mechanical forces CODEm  

2.5.1 Unintentional firearm injuries CODEm  

2.5.2 Other exposure to mechanical forces CODEm and fatal discontinuity estimation  

2.6 Adverse effects of medical treatment CODEm  

2.7 Animal contact CODEm  

2.7.1 Venomous animal contact CODEm  

2.7.2 Non-venomous animal contact CODEm  

2.8 Foreign body CODEm  

2.8.1 Pulmonary aspiration and foreign body 
in airway 

CODEm  

2.8.2 Foreign body in other body part CODEm  

2.9 Environmental exposure to heat and 
cold 

CODEm and fatal discontinuity estimation  

2.10 Exposure to forces of nature Fatal discontinuity estimation  

2.11 Other unintentional injuries CODEm and fatal discontinuity estimation  

3 Self-harm and interpersonal violence CODEm  

3.1 Self-harm CODEm  

3.1.1 Self-harm by firearm CODEm  

3.1.2 Self-harm by other specified means CODEm  

3.2 Interpersonal violence CODEm and fatal discontinuity estimation  

246



Table  – Injury cause list   

ID Cause Modelling strategy Covariate changes from 
GBD 2016 

3.2.1 Physical violence by firearm CODEm  

3.2.2 Physical violence by sharp object CODEm  

3.2.3 Physical violence by other means CODEm  

3.3 Conflict and terrorism Fatal discontinuity estimation  

3.4 Executions and police conflict CODEm and fatal discontinuity estimation  
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3.5.2 Alcohol Use SDG Capstone Appendix 
Flowchart 
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Input data & methodological summary 
Exposure 
Case definition 
We defined exposure as the grams per day of pure alcohol consumed amongst drinkers. We constructed 
this exposure using the indicators outlined below: 

1. Current drinkers, defined as the proportion of individuals who have consumed at least one 
alcoholic beverage (or some approximation) in a 12-month period. 

2. Lifetime abstainers, defined as the proportion of individuals who have never consumed an 
alcoholic beverage.  

3. Alcohol consumption (in grams per day), defined as grams of alcohol consumed by current 
drinkers, per day, over a 12-month period. 

4. Alcohol liters per capita stock, defined in liters per capita of pure alcohol, over a 12-month 
period. 
 

We also used three additional indicators to adjust alcohol exposure estimates to account for different 
types of bias: 

1. Number of tourists within a location, defined as the total amount of visitors to a location within 
a 12 month period. 

2. Tourists’ duration of stay, defined as the number of days resided in a hosting country. 
3. Unrecorded alcohol stock, defined as a percentage of the total alcohol stock produced outside 

established markets. 
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Input data 
A systematic review of the literature was performed to extract data on our primary indicators. The 
Global Health Exchange (GHDx), IHME’s online database of health-related data, was searched for 
population survey data containing participant-level information from which we could formulate the 
required alcohol use indicators on current drinkers, lifetime abstainers, alcohol consumption, and binge 
drinkers. Data-sources were included if they captured a sample representative of the geographic 
location under study. We documented relevant survey variables from each data-source in a spreadsheet 
and extracted using STATA 13.1 and R 3.3 . A total of 2,821 potential data-sources were available in the 
GHDx across countries with subnational locations, out of which 191 data-sources (corresponding 88,734 
tabulated data-points by location/year/sex/age) were included across the four indicators mentioned 
above.  

Within the grams per day, current drinkers, and abstainers model, we had a large amount of data on 
male drinking but not female drinking. To ensure a balanced dataset between sexes for use within 
DisMod MR 2.1, we imputed for missing sex observations within locations where data existed on male 
drinking but not female drinking. We used the following models to do so: 

For grams per day: 

𝑦𝑦𝑖𝑖  ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜇𝜇,𝜙𝜙) 
𝜇𝜇 = 𝑙𝑙𝑙𝑙𝑙𝑙−1(1 +  𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎 + (1 + 𝑠𝑠𝑠𝑠𝑠𝑠|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + (1 + 𝑠𝑠𝑠𝑠𝑠𝑠|𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

Where y is average amount of grams per day within a demographic, 𝜇𝜇 a parameter for the mean of the 
average amounts, and 𝜙𝜙 is a dispersion parameter 

For current drinking and abstention:  

𝑦𝑦𝑖𝑖  ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜋𝜋𝑖𝑖 ,𝑛𝑛) 
𝜋𝜋𝑖𝑖  ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜇𝜇𝑖𝑖 ,𝜃𝜃𝑖𝑖  ) 
𝜇𝜇𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1(1 +  𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑠𝑠𝑠𝑠𝑥𝑥 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎 + (1 + 𝑠𝑠𝑠𝑠𝑠𝑠|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + (1 + 𝑠𝑠𝑠𝑠𝑠𝑠|𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

We then sampled 1000 draws from the above estimator for both sex = male & sex = female, with all 
other variables fixed by demographic unit. For sampling draws, we assumed the parameters were 
Gaussian multivariately distributed. For each demographic unit with only male observations, we 
multiplied male data by the ratio between the draws with sex = male & sex = female to impute for 
female observations. 

To generate estimates of alcohol consumption in liters per capita (LPC), we obtained data from 
FAOSTAT, and WHO GISAH database.1,2 To provide more stable time trends in the model, we 
transformed FAO sales data (which calculates stock based on primary inputs) to a lagged five-year 
average. Given WHO uses FAO data in locations where WHO could not find data using their own 
methods, we removed FAO data in the locations where WHO used FAO data in place of their own. To 
correct for bias in the underlying data sources, we adjusted the input data (crosswalked), by running a 
mixed effect model on the log average of the data with dummy variables for the data series, as well as 
random effects on super region, region, country, and time. We adjusted the data points using the 
following equation: 

 

𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐷𝐷 + (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 |𝐷𝐷,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 | 𝐷𝐷,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 |𝐷𝐷,𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌| 𝐷𝐷) 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗  𝑒𝑒𝛽𝛽1�+ 𝛽𝛽3�  

where: 

𝐷𝐷 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 

None of the data sources on liters per capita provided estimates of uncertainty, which is a component 
required for our eventual modelling strategy. To generate uncertainty, we ran a Loess model on the 
adjusted data points and the standard deviation between the difference of the Loess smoothed model 
and the adjusted data points across a five-year span was used as the standard deviation of the data. 
(i.e., if the total stock changes more variably in a narrow time frame, we believe the data to be more 
uncertain). 

We obtained data on the number of tourists and their duration of stay from the UNWTO.3 We applied a 
crosswalk across different tourist categories, similar to the one used for the liters per capita data, to 
arrive at a consistent definition (i.e. visitors to a country). 

We obtained estimates on unrecorded alcohol stock from six published papers,4-9 consisting of 166 
locations. 

Modelling strategy 
While population-based surveys provide accurate estimates of the prevalence of lifetime abstainers and 
current drinkers, they typically underestimate real alcohol consumption levels.10-12 As a result, we 
considered the liter per capita input to be a better estimate of overall volume of consumption. Per 
capita consumption, however, does not provide age- and sex-specific consumption estimates needed to 
compute alcohol-attributable burden of disease. Therefore, we use the age-sex pattern of consumption 
among drinkers modelled from the population survey data and the overall volume of consumption from 
FAO and GISAH to determine the total amount of alcohol consumed within a location. In the paragraphs 
we outline how we estimated each primary input in the alcohol exposure model, as well as how we 
combined these inputs to arrive at our final estimate of grams per day of pure alcohol. We estimated all 
models below using 1,000 draws. 

For data obtained through surveys, we used DisMod-MR 2.1 to construct estimates for each 
country/year/age/sex. We chose to use DisMod due to its ability to leverage information across the 
heterogeneous age groups reported in the surveys, through age-integration, as well as the model’s 
ability to leverage information available from data in nearby locations or time-periods.13  

We modelled the alcohol liters per capita data, as well as the total number of tourists, using a spatio-
temporal Gaussian process regression (ST-GPR). We chose parameters, as well as our final model, using 
out-of-sample 10-fold cross validation. 

Given the heterogeneous nature of the estimates on unrecorded consumption, as well as the wide 
variation across countries and time-periods, we took 1,000 draws from the uniform distribution of the 
lowest and highest estimates available for a given country. We did this to incorporate the diffuse 
uncertainty within the unrecorded estimates reported. We used these 1,000 draws in the above 
equation. We adjusted LPC only for countries where estimates were available.  

We adjusted the alcohol LPC for unrecorded consumption using the following equation: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿
(1−% 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)

  

 

We then adjusted the estimates for alcohol LPC for tourist consumption by adding in the per capita rate 
of consumption abroad and subtracting the per capita rate of tourist consumption domestically.   
 
  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

− 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 =

 
∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖,𝑙𝑙 ∗ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙 ∗ 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡ℎ 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖,𝑙𝑙
365  ∗  𝑙𝑙

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑
  

where: 

𝑙𝑙 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒 Domestic consumption abroad 𝑜𝑜𝑜𝑜 Tourist consumption domestically, 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

After adjusting alcohol LPC by tourist consumption and unrecorded consumption for all location/years 
reported, sex-specific and age-specific estimates were generated by incorporating estimates modelled in 
DisMod for percentage of current drinkers within a location/year/sex/age, as well as consumption 
trends modelled in the DisMod g/day model. We do this by first making sure the sum of percent current 
drinkers and percent abstainers sum to one for a given location/year/age/sex. We then calculate the 
proportion of total consumption for a given location/year by age and sex, using the estimates of alcohol 
consumed per day, the population size, and the percentage of current drinkers. Lastly, we then multiply 
this proportion of total stock for a given location/year/sex/age by the total stock for a given 
location/year to calculate the consumption in terms of liter per capita for a given location/year/sex/age. 
We then convert these estimates to be in terms of grams/per day. The following equations describe 
these calculations: 

 

 % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 =  
 % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

 % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 + % 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎
 

 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

=  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜  𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑  𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜  𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗  % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 𝑠𝑠,𝑎𝑎
 

 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦  ∗  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎

 % 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎
 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗

1000
365
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where: 
 
𝑙𝑙 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑦𝑦 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. 
 
We then used the gamma distribution to estimate individual level variation within location, year, sex, 
age drinking populations, following the recommendations of other published alcohol studies.7,8 We 
chose parameters of the gamma distribution based on the mean and standard deviation of the 1,000 
draws of alcohol g/day exposure for a given population. 

 
 

Theoretical minimum-risk exposure level 
 
We calculated TMREL by first calculating the overall risk attributable to alcohol. We did this by weighting 
each relative risk curve by the share of overall DALYs for a given cause. We then took the minimum of 
this overall-risk curve as the TMREL of alcohol-use. More formally,  
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜔𝜔(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜔𝜔(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) =  �𝑅𝑅𝑅𝑅𝑖𝑖(𝑔𝑔/𝑑𝑑𝑑𝑑𝑑𝑑) ∗
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝜔𝜔
𝑖𝑖

𝜔𝜔

𝑖𝑖

 

 
Where:  
 𝜔𝜔 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠,  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 2010,𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑. 
 
In other words, we chose TMREL as being the exposure that minimises your risk of suffering burden 
from any given cause related to alcohol. We weight the risk for a particular cause in our aggregation by 
the proportion of DALYs due to that cause. (e.g. since more observed people die from IHD, we weight 
the risk for IHD more in the above calculation of average risk compared to, say, diabetes, even if both 
have the same relative risk for a given level of consumption) 
 

Relative risks 
For GBD 2016, we performed a systematic literature review of all cohort and case-control studies 
reporting a relative risk, hazard ratio, or odds ratio for any risk-outcome pairs studied in GBD 2016. 
Studies were included if they reported a categorical or continuous dose for alcohol consumption, as well 
as uncertainty measures for their outcomes, and the population under study was representative.  
 
We then used these studies to calculate a dose-response, modelled using DisMod ODE. We chose 
DisMod ODE rather than a conventional mixed effect meta-regression because of its ability to estimate 
nonparametric splines over doses (i.e. for most alcohol causes, there is a non-linear relationship with 
different doses) and incorporate heterogeneous doses through dose-integration (i.e. most studies 
report doses categorically in wide ranges. DisMod ODE estimates specific doses when categories overlap 
across studies, through an integration step.) We used the results of the meta-regression to estimate a 
non-parametric curve for all doses between 0-150 g/day and their corresponding relative risks. For all 
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causes, we assumed the relative risk was the same for all-ages and sexes, with the exception of ischemic 
heart disease, ischemic stroke, hemorrhagic stroke, and diabetes, which we estimated by sex.  
 
Regarding injuries outcomes, we constructed relative risks based on chronic exposure rather than acute, 
which has a weaker relationship to the outcome, though still significant.15,16,18-21 We decided to use 
chronic exposure given the lack of available data on acute exposure, as well as, the lack of cohort studies 
using acute exposure as a metric. Further, using chronic exposure allowed us to construct relative risks 
curves for unintentional injuries, interpersonal violence, motor vehicle accidents, and self-harm using 
the same method as reported above.  
 
In the case of motor vehicle accidents, we adjusted the PAF to account for victims of drunk drivers that 
are involved in accidents. Using data from the Fatality Analysis Reporting System in the US,17 we 
calculated the average number of fatalities in a car crash involving alcohol, as well as the percentage of 
those fatalities distributed by age and sex (figures 1 and 2). We aggregated FARS data across the years 
1985-2015, given there was little variation in the data temporally and the number of cases in old age 
groups had too much variance when constructing estimates by year. To adjust PAFs, we multiplied 
attributable deaths by the average number of fatalities from FARS and redistributed the PAF amongst 
each population, based on the probability of being a victim to a certain drunk driver by age and sex, 
based on the FARS data. The following equation describes this process: 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑 ∗  𝑃𝑃(𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)𝑑𝑑

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
 

 
where: 
 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎  
𝑑𝑑 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦.  
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Population attributable fraction 
 
For all causes, we defined PAF as: 
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𝑃𝑃(𝑥𝑥) = 𝑃𝑃𝐶𝐶 ∗ Γ(𝒑𝒑) 
 

where:  

𝑃𝑃𝐶𝐶  𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑃𝑃𝑎𝑎 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑅𝑅𝑅𝑅𝑐𝑐(𝑥𝑥) 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
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We performed the above equation for 1,000 draws of the exposure and relative risk models. We then 
used the estimated PAF draws to calculate YLL, YLDs, and DALYs, as per the other risk factors. 
 

  

Figure 2 
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3.7.1 Met Need for Family Planning with Modern Methods SDG Capstone 
Appendix 
 

Flowcharts 

 

 

Input Data & Methodological Summary 
Indicator definition 
This modeling strategy encompassed the indicator associated with the proportion of women aged 15 to 
49 years with their family planning needs met with modern contraception methods (3.7.1). This indicator 
also is an individual component of Indicator 3.8.1, which is the composite indicator for universal health 
coverage (UHC) tracer interventions. 

Indicator 3.7.1 

As a component of SDG Goal 3, SDG Target 3.7 is measured using SDG Indicator 3.7.1: 

SDG Goal 3: Ensure healthy lives and promote well-being for all at all ages 

SDG Target 3.7: By 2030, ensure universal access to sexual and reproductive health-care services, 
including for family planning, information and education, and the integration of reproductive 
health into national strategies and programmes 
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SDG Indicator 3.7.1: The proportion of women of reproductive age (15 to 49 years) who are 
sexually active and have their need for family planning satisfied with modern methods 

We defined modern contraceptive methods as the current use of male or female sterilization, male or 
female condoms, diaphragms, spermicide foam/jelly, oral hormonal pills, implants, injections, intra-
uterine devices (IUDs), or emergency contraceptives. Traditional contraceptive methods were defined as 
the current use of alternative methods including but not limited to withdrawal, periodic abstinence, the 
rhythm method, and the lactational amenorrhea method (LAM).  

Women between the ages of 15 and 49 were defined as having a need for family planning if they were 
using any method of contraception, or if they were fecund, sexually active, and did not wish to become 
pregnant within the next two years. Sexual activity was assumed for all currently married or in-union 
women. We defined met need with modern methods as the proportion of women with a need for 
contraception that are actually using modern methods. It is important to note that with respect to most 
family planning literature, the GBD met need indicator corresponds to the proportion of demand satisfied 
with modern methods, not the indicator for unmet need (for which the denominator is all women, not 
just women with a need for contraception). Women were assumed to be fecund unless they met one or 
more of the following criteria:  

(1) they were pregnant  

(2) they were postpartum amenorrheic from a birth that occurred 5 or more years ago  

(3) they had not menstruated within the last 6 months (unless postpartum amenorrheic for less 
than 5 years)  

(4) they had been continuously married/in a union for 5 or more years without having a child and 
without ever having used any method of contraceptive (modern or traditional)  

(5) they otherwise indicated that they were infertile (ex. mentioned having had a hysterectomy).  

Women who were pregnant or postpartum amenorrheic from a birth within the last 2 years were 
considered separately, and were determined to have a need for contraception if they indicated a desire 
to have delayed or avoided their current or most recent pregnancy.  

Input data 
The present study used two primary types of input data in order to ultimately generate a time series of 
met need for family planning with modern methods:  

(1) individual-level microdata from which met need for family planning with modern methods 
could be directly estimated  

(2) tabulated data from survey reports for which met need with modern methods could be 
directly extracted (as demand satisfied with modern methods) or indirectly calculated based on 
reported estimates of modern contraception coverage, any contraception coverage, and unmet 
need for family planning.  

Our primary data sources for met need with modern methods included multi-country survey series such 
as Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and Centers for 
Disease Control and Prevention Reproductive Health Surveys (CDC RHS). In addition, we extracted data 
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from the Performance Monitoring and Accountability 2020 (PMA2020) surveys, to which we were 
granted access. We originally sought a wider universe of population surveys, but our search was 
somewhat restricted to the survey series for which information on contraception use by method and 
marital status was readily available for all women of reproductive age. Notably, relatively few microdata 
sources were available for higher-income countries; subsequently, we heavily relied on tabulated data for 
these geographies. 

The below table shows the number of studies included in the 2017 SDG Capstone paper. 

Survey Series Number of Included Surveys 
DHS 310 
MICS 200 

CDC RHS 71 
PMA2020 50 

Country-specific 356 
 

Among the surveys for which we had access to microdata, we applied survey weights based on survey 
sampling frames to generate weighted national estimates of met need accompanied by estimates of 
standard error (SE). In the absence of microdata or survey sampling information, we used survey sample 
sizes as a mechanism for informing uncertainty estimation. 

A number of the tabulated report data sources did not include estimates of met need with modern 
methods; instead, such sources provided information on prevalence of modern contraception use, 
prevalence of any contraception use, and prevalence of unmet need for family planning among women of 
reproductive age. Following the recommended analytic approach from DHS and the Inter-agency Expert 
Group on the SDG Indicators (IAEG-SDGs)1,2, we estimated met need with modern methods based on the 
following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 +  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the prevalence of met need with modern methods (the GBD indicator); 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀  is 
the modern contraceptive prevalence among women aged 15 to 49 years; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 is the total 
contraceptive prevalence among women aged 15 to 49 years; and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  is the prevalence of 
women who have need for family planning but are not currently using any method of contraception, 
where the denominator is all women aged 15 to 49 years. In future iterations of this analysis, we will 
prioritize gaining access to microdata for these surveys, so that we can directly estimate met need with 
modern methods from individual-level data. 

For a subset of surveys, contraceptive use and met need was only collected for women who were 
currently or had ever been married. To estimate contraceptive use and met need for all women using 
such restricted data, we performed counterfactual re-extractions on surveys for which microdata was 
available for all women, this time subsetting our re-analysis to only currently married or ever-married 
women. We used the average difference between the original unrestricted estimates and the 
counterfactual re-extractions to crosswalk modern contraceptive use and met need for those surveys 
which only sampled current or ever-married women. These crosswalks were performed separately within 
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each 5-year age group to account for the differential effect by age of restricting data collection based on 
marital status. Additionally, some surveys did not ask questions related to fecundity or the desire for 
children within the next two years, creating further sources of potential bias in our met need estimates. 
For these issues we used the same crosswalk methodology, accounting for missing variables by re-
extracting available microdata under counterfactual scenarios to inform age-specific crosswalks. This 
allowed us to predict met need for women in countries where contraceptive information was gathered, 
but information on fecundity and desire for children were unavailable. When multiple issues applied to a 
survey (for example, when a survey was restricted to married women and also lacked questions related to 
fecundity), we crosswalked only once, using a counterfactual re-extraction that matched the data issues 
of the original survey in order to account for potential interactions between missing and restricted 
variables.  

After accounting for differences in survey sampling frames and missing variables, we leveraged the 
relationship between modern contraception use and met need with modern contraception to predict 
met need where only modern contraceptive prevalence data was available. To do this, we ran a 
regression of met need observations against modern contraceptive prevalence by age group. To account 
for geographical differences in the relationship between modern contraceptive prevalence and met need, 
the regression included an interaction term between modern contraceptive use and GBD super-region.  

Modelling strategy 

For the present analysis, we used Spatiotemporal Gaussian process regression (ST-GPR), a three-stage 
model used widely within the GBD study to synthesize coherent trends and uncertainty from multiple 
sources of data. The first stage included fitting a linear model with fixed effects on age and the Socio-
Demographic Index. The second stage involved smoothing over space-time based on the residuals from 
the first stage linear model. The third stage used Gaussian Process Regression (GPR) to generate a 
cohesive time series of met need with modern contraception and uncertainty for all GBD locations and 
from 1990 to 2017. 

After generating age-specific estimates of met need and modern contraceptive prevalence, we could 
calculate age-specific estimates of need for contraception using the formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  is the age-specific prevalence of need for contraception among women aged 15 to 49 
(referred to as demand for contraception in most family planning literature). Using 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  and GBD 
population estimates we could calculate the weights needed to aggregate age-specific met need for 
contraception into total met need among women aged 15 to 49, which is the SDG indicator reported in 
this paper. 
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3.7.2 Adolescent Fertility SDG Capstone Appendix 
 

Flowcharts 
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Input Data & Methodological Summary 
Indicator definition 
This modeling strategy encompassed the indicator associated with the number of births per 1,000 
women aged 10-14 and aged 15-19 years (3.7.2).  

 

Indicator 3.7.1 

As a component of SDG Goal 3, SDG Target 3.7 is measured using SDG Indicator 3.7.1: 

SDG Goal 3: Ensure healthy lives and promote well-being for all at all ages 

SDG Target 3.7: By 2030, ensure universal access to sexual and reproductive health-care services, 
including for family planning, information and education, and the integration of reproductive 
health into national strategies and programmes 
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SDG Indicator 3.7.2: Number of births per 1,000 women aged 10-14 years and women aged 15 to 
19 years 

Input data 
We used three primary source types for the fertility analysis: (1) the number of live births by age of 
mother reported through vital registration (VR) systems; (2) complete birth histories (CBH); and (3) 
summary birth histories (SBH). In total, we compiled 9548 location-years of data for women aged 10 to 54 
for the 1950 to 2017 period.  Below we present a brief description of each of these source types and the 
results of data synthesis. 

Fertility Data Source Types 

Accurate and complete registration data of live births by age of the mother are typically regarded as the 
gold standard source of information on fertility; in theory, these regular (usually annual) reports should 
capture all births in a given country or subnational unit within a given year. High-income countries tended 
to have high-quality VR systems that contained the date and location of the birth, as well as detailed 
demographic characteristics of the mother and the date and location of birth. In lower-income countries, 
however, birth registration systems tended to suffer from interrupted and/or delayed reporting and 
incomplete coverage. Birth registries provided almost all of the fertility information pertaining to women 
aged 10-14 and 50-54, as the overwhelming majority of household surveys only collected birth histories 
from women aged 15-49 at the time of survey.  

In cases where the completeness and quality of birth registration data were poor, we relied heavily on 
other types of data sources (namely household surveys and censuses) to triangulate the level and age-
pattern of fertility. Fertility information in household surveys and censuses was predominantly in two 
forms— complete birth histories (CBH) and summary birth histories (SBH). CBHs, which grew to 
prominence with the World Fertility Surveys (WFS) administered in the 1970s and 80s, collected 
information about a surveyed mother’s date of birth, as well as the dates of birth and death of all children 
she can recall bearing in her lifetime. Since each birth could be linked to the time of birth and the 
mother’s concurrent age, this permitted the calculation of period and age-specific fertility rates in the 
years prior to the survey under assumptions of no survivor, migrant, or recall bias.  Many major survey 
programs contain CBH modules, including the Demographic and Health Surveys (DHS), Multiple Indicator 
Cluster Surveys (MICS), and the Reproductive Health Surveys (RHS).  

SBHs, on the other hand, collected no information about the dates of birth of children, but instead only 
recorded the total number of children ever born (CEB) to a woman over her lifetime. Also collected is the 
mother’s date of birth or age at the time of interview. These data provided valuable information about 
the overall level of fertility experienced by cohorts over time but could not be used by themselves to 
estimate period and age-specific fertility. Using assumptions similar to CBH (no survivor or migrant bias), 
cohort age patterns of fertility derived from other data sources could be used to split CEB information 
into period age-specific fertility rates. Availability of SBHs far surpassed that of CBHs, largely due to their 
relative simplicity but also their precedence. CEB questions have been featured in censuses since the turn 
of the 20th century and thus comprise a large share of information about fertility in low-income settings 
prior to the mid 1970s. In addition to censuses, a number of other survey families featured SBH, including 
a subset of MICS, the Living Standards and Measurement Surveys (LSMS), and a variety of country-specific 
surveys. 
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Fertility Data Identification and Synthesis 

Registry data were identified through the UN Demographic Yearbook (DYB; UN Statistical Division 
[UNSTAT]),6 the Human Fertility Collection (HFC; Max Planck Institute for Demographic Research 
[MPIDR]),7 official publications, online data portals of national statistical offices, and international 
collaborators. The DYB and HFC compile registry-based fertility data as reported by national statistical 
offices and country research institutes. DYB reports of live births by age of mother were extracted for 
every year available from 1948, and the complete set of age-specific HFC data were downloaded in 
October 2017. Estimates provided to HFC by individual researchers were excluded from our analyses (i.e. 
we incorporated only empirical data, per MPIDR’s source categorizations); country-year-ages already 
covered by the DYB were also excluded. We also extracted data from sample registration systems (SRS) 
typical of South Asian countries, including India, Pakistan, and Bangladesh. In total, we compiled 7,817 
country years of VR data, with 2,421 of them coming prior to 1970 and 1,755 of them coming after 2000. 
We included 31 location-years of data from SRS, the majority of which cover India.   

Fertility data from household surveys and censuses were initially identified using the Global Health Data 
Exchange (GHDx). Records classified as "survey" or "census" and that contained any of the keywords 
"complete birth history," "summary birth history," or "fertility" were then compiled and reviewed by 
research team members to verify that they contained sufficient detail for inclusion in GBD analysis. 
Additional seeking was conducted for identified gaps in data, primarily through country statistical office 
websites as well as major survey families such as DHS, MICS, WFS, and RHS. In cases where sufficiently-
detailed data were not publicly available, in-country collaborators assisted in its procurement. Fertility 
data from the 1950s and 60s in low-income settings (particularly sub-Saharan Africa) was specifically 
sought in colonial censuses containing SBH information. Where sources provided microdata, we 
standardized and processed CBHs to compute period age-specific fertility rates (ASFR) every three years 
over a fifteen-year recall and collapsed SBHs to tabulations of average children ever born by mother’s age 
to be later split by cohort age patterns from the first modeling stage (see Section 2.2.2 for further details). 
Where microdata were unavailable, we extracted period ASFRs or average CEB by mother’s age as 
documented in reports or other publications. In total, we extracted and processed 429 CBHs and 643 
SBHs, out of 4259 identified surveys and censuses. Occasionally, the recall type of a survey for which 
tabulated period ASFRs were available was unable to be identified from the report or available 
documentation. These accounted for only 59 location-years.  

Modelling strategy 

Age-specific fertility rate estimation 

Using all the data described above, we estimated age-specific fertility rates by 5-year age groups from 
ages 10 to 54 years in two broad steps. First, we estimated age-specific fertility rates for 15 to 49 years of 
age using spatio-temporal Gaussian process regression (ST-GPR). Next, we estimated fertility rates for 10 
to 14 year olds as a function of estimated fertility in 15 to 19 year olds. The sections below provide 
further estimation process details.  

Age-specific fertility rate estimation for 15 to 49 years 

ASFR for age groups 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, and 45-49 were estimated using ST-GPR, 
which has been covered in detail elsewhere.1,2 The estimation of ASFR involved the following sequential 
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steps: (1) Estimation of ASFR 20-24 using age-specific data from CBH and VR and using mean years of 
education in 20-24 year olds as a predictor; (2) Estimation of ASFR for the remaining age groups using 
age-specific data from CBH and VR and using age-specific mean years of education and estimated ASFR 
20-24; (3) Split SBH data by age and period using the estimated location, time and age-specific estimates 
of ASFR; (iv) Re-estimate ASFR 20-24 using CBH, VR and the period-age-split SBH data; and (v) Re-estimate 
ASFR using CBH, VR and the period-age-split SBH data.  

The ST-GPR models for ASFR were implemented as follows. The first stage mixed effect regression was fit 
in bounded logit space:  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
� 

The lower bound was the minimum fertility by age across time and geography, and the upper bound was 
the 99.3 percentile of fertility by age across time and geography, after dropping implausibly high ASFRs 
above 0.5. This upper bound on ASFR data produced an implied maximum TFR of 10.5.  

The specifications of the mixed effects regression are below.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅20−24) = 𝛽𝛽1 + 𝛽𝛽2 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐.𝑦𝑦 + 𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑛𝑛−𝑛𝑛+5) = 𝛽𝛽1 + 𝛽𝛽2 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑐𝑐,𝑦𝑦 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅20−24,𝑐𝑐,𝑦𝑦) + 𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

Where 𝑛𝑛 is between 25 and 45, 𝛽𝛽1 is the intercept, 𝛽𝛽2 is the coefficient on female education, female 
education and the ASFR 20-24 estimates are specific by country and year, and 𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is a location-
source random intercept.  

Data Source Adjustment 

After the mixed-effects model was computed, the random intercept on the concatenation of location and 
source was used to adjust data to a reference or standard source. The adjustment factor was the sum of 
the difference between the reference source fixed and random effects, and the fixed and random effects 
on the data point for the specific source, as below, and was then added to the data to derive an adjusted 
value.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝐸𝐸𝑟𝑟𝑒𝑒𝑓𝑓 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 
Where RE represents a random intercept of either a reference source or a data-point specific location-
source. When more than one reference source was selected in a single location, the values of the location 
source random effects for each reference source were averaged to produce the first term of the 
equation.  

Reference sources were initially chosen as: (1) complete VR for locations with complete VR, (2) an 
average of complete birth history sources for locations with 1 or more complete birth history, (3) and 
agnostically (as an average of all the sources for each location) for locations with neither complete VR nor 
complete birth histories. VR was designated as complete for a country if the median of child death 
registration completeness for the location over all available years was over 95%.5 For some locations, 
reference sources were chosen based on expert judgement. For example, data from past censuses (1950s 
and 1960s) in Sub-Saharan Africa were often chosen as reference sources to accurately capture the 
depressed fertility during that time period. 
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Hyper-parameter Selection 

The residual smoothing and GPR stages of ST-GPR were implemented using the output of the mixed 
effects regression and data source adjustments. Hyper-parameters for the residual smoothing and GPR 
stages were chosen based on a location and age-specific data density score. For locations with VR, the VR 
component of the score was calculated as the sum of the years for which VR data were available, and 
then down-weighted if the number of births in the age group was less than 100. Incomplete VR was 
down-weighted by 0.5. For non-VR sources, the number of sources was counted instead of the number of 
years. For example, one DHS survey would count as one source, even if it contributed more than 1 data 
point.  

The data density score was calculated as follows:  

𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎

=  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 + �2 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎�
+ �0.25 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎� + �0.5 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎�
+ 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 

Where 𝐷𝐷𝐷𝐷 stands for data density, 𝐶𝐶𝐶𝐶𝐶𝐶 is complete birth history, 𝑆𝑆𝑆𝑆𝑆𝑆 is summary birth history, and all 
elements of the equation incorporate year and age.  

ST-GPR hyper-parameters 𝜆𝜆, 𝜉𝜉, and scale were designated by categories of data density, as shown in 
Table B below.  

Table B: Hyper-parameter Values by Data Density 

Data Density  Lambda Zeta Scale 
Over 50 0.2 0.99 5 
Between 30 and 50 0.4 0.9 10 
Between 20 and 30 0.6 0.8 15 
Between 10 and 20 0.8 0.7 15 
Under 10 1 0.6 15 

For non-complete VR sources, data variance was calculated as the variance between the spatio-temporal 
prediction and the unadjusted data. For location-ages with fewer than 5 data points, the maximum data 
variance in the associated GBD region was used. For complete VR sources, we assumed that non-
sampling variance was 0 and calculated sampling variance using the binomial equation shown below:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ (1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑠𝑠
 

To calculate amplitude, we computed the mean of the location-specific standard deviation of the 
difference between the first stage mixed-effect regression and the second stage spatio-temporal 
smoothing, restricted to national locations with a data density score of over 50 in the years between 1990 
to 2017. This amplitude was applied to all locations.  

SBH Methods 

SBHs that collected CEB data were more frequently available at early time points than CBHs. For example, 
questions about CEB were often included in early colonial censuses in Africa. Multiple techniques exist to 
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compute period-and-age-specific fertility from SBH information, the most widely used of which is the 
Brass Parity/Fertility ratio method. This method assumes, however, that age-specific fertility remains 
constant over time. To relax this assumption, we used the first set of estimates of age-specific fertility 
that were based on CBH and registry data, an estimate of dynamic cohort age patterns over time, to split 
SBH into period-and-age-specific ASFR. Using the CBH and registry data-based estimates, we calculated 
the implied cohort fertility as the weighted average of the upper and lower bounding age groups, taking 
into account a cohort aging into the next 5-year age interval and adopting the fertility associated with 
that age interval. The cumulative sum of the implied cohort fertility yielded CEB implied by the CBH and 
registry based model for birth cohorts between 1940 (who began to experience AFSR 10-14 in 1950 at 
the beginning of our estimation period) and 2007 (who began to experience ASFR 10-14 in 2017 at the 
end of our estimation period). 

To split SBH data into period and age specific ASFR, we applied the ratio of implied CEB from the CBH and 
registry based model and the empirical children from SBH to the cohort age pattern from the CBH and 
registry based model. This approach provided additional information about the all-age level of fertility 
over time, and represented a large increase in the availability of past data. Once the data was split, we 
reran the estimation process, incorporating all registry data, CBH, and period-and-age split SBH data. 

Age-specific fertility rate estimation for 10 to 14 year olds 

ASFR for 10-14 was estimated separately, given the scarcity of the data for those age groups in any 
locations without a vital registration system.  In both models, we leverage the relationship between ASFR 
in one age group and the neighboring age group. In age 10-14, we ran a mixed effects regression on the 
log of the ratio of ASFR 10-15 over ASFR 15-19, and used ASFR 15-19 as a predictor along with nested 
random intercepts by super-region, region, and location, as follows: 

log �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 10 − 14
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 15 − 19

� = β1 + β2 log(ASFR 15 − 19) + γsr + γ𝑟𝑟 + γloc 

Where β1 is the intercept and γsr, γ𝑟𝑟, and γloc are nested super-region, region, and location random 
intercepts.  
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3.8.1 Universal Health Coverage (UHC) Service Coverage Index SDG 
Capstone Appendix 
 
Input data & Methodological summary 
Indicator definition 
This modeling strategy involves the construction of a composite measure for the universal health 
coverage (UHC) service coverage index (SDG Indicator 3.8.1). The UHC service coverage index includes 
nine measures of coverage for a subset of interventions for communicable diseases and maternal and 
child health and the 32 causes that comprise the Healthcare Access and Quality (HAQ) Index, a summary 
measure of personal healthcare access and quality based on risk-standardised death rates and mortality-
to-incidence ratios (MIRs) from causes amenable to healthcare.1,2 For GBD 2017, using MIRs instead of 
risk-standardised death rates for cancers was a key improvement for better approximating access to 
quality cancer care.2 Each component of the UHC service coverage index was scaled on a scale of 0 to 
100, with 0 being the worst observed from 1990 to 2017 and 100 being the best observed during this 
time, and then the arithmetic mean was taken of each component. We then projected the UHC service 
coverage index, based on past trends, as a composite indicator from 2018 to 2030. 

The measures of intervention coverage are as follows: three doses of diphtheria-pertussis-tetanus (DPT3), 
measles vaccine, three doses of the oral polio vaccine or inactivated polio vaccine; met need for family 
planning with modern methods; antenatal care (ANC) coverage (one ANC visit [ANC1] and four ANC visits 
[ANC4]); skilled birth attendance (SBA); in-facility delivery rates; and coverage of antiretroviral therapy 
(ART) among people living with HIV.  

The causes that comprise the HAQ Index are as follows: tuberculosis, diarrheal diseases, lower respiratory 
infections, upper respiratory infections, diphtheria, whooping cough, tetanus, measles, maternal 
disorders, neonatal disorders, colon and rectum cancer, non-melanoma cancer, breast cancer, cervical 
cancer, uterine cancer, testicular cancer, Hodgkin's lymphoma, leukemia, rheumatic heart disease, 
ischemic heart disease, cerebrovascular disease, hypertensive heart disease, peptic ulcer disease, 
appendicitis, hernia, gallbladder and biliary diseases, epilepsy, diabetes, chronic kidney disease, 
congenital heart anomalies, and adverse effects of medical treatment. 

Indicator 3.8.1 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.8, achieve universal health coverage, including financial risk protection, access to quality essential 
health-care services and access to safe, effective, quality and affordable essential medicines and vaccines 
for all, is measured using SDG Indicator 3.8.1.  

The UN definition of Indicator 3.8.1 is “Coverage of essential health services (defined as the average 
coverage of essential services based on tracer interventions that include reproductive, maternal, 
newborn and child health, infectious diseases, non-communicable diseases and service capacity and 
access),” with which we sought to align by combining measures of RMNCH, ART intervention coverage, 
and component parts of the HAQ Index. 
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UHC service coverage index indicator input data  

Individual UHC service coverage index components serve as the input data for the overall UHC service 
coverage index, and unless otherwise specified, their write-ups are included in this portion of the 
appendix. Exceptions were interventions or causes covered by other indicator write-ups, such as skilled 
birth attendance (SDG indicator 3.1.2); maternal disorders (SDG indicator 3.1.1); and cardiovascular 
diseases, cancers, diabetes, and chronic respiratory diseases considered amenable to healthcare (SDG 
indicator 3.4.1). 

UHC service coverage index component  Appendix content 
Vaccine coverage (diphtheria-pertussis-tetanus vaccination, three doses [DPT3], 
measles, and polio vaccination, 3 doses) 

Under 3.8.1 

Antenatal care (ANC), 1 visit (ANC1) and 4 visits (ANC4) Under 3.8.1 
Skilled birth attendance (SBA) Indicator 3.1.2 
In-facility delivery rate (IFD) Under 3.8.1 
Met need for family planning with modern contraception methods Indicator 3.7.1 
Antiretroviral therapy (ART) coverage among people living with HIV Under 3.3.1 
Causes of death included in the Healthcare Access and Quality (HAQ) Index: 
tuberculosis, diarrheal diseases, lower respiratory infections, upper respiratory 
infections, diphtheria, whooping cough, tetanus, measles, maternal disorders, 
neonatal disorders, colon and rectum cancer, non-melanoma cancer, breast 
cancer, cervical cancer, uterine cancer, testicular cancer, Hodgkin's lymphoma, 
leukemia, rheumatic heart disease, ischemic heart disease, cerebrovascular 
disease, hypertensive heart disease, chronic respiratory diseases, peptic ulcer 
disease, appendicitis, hernia, gallbladder and biliary diseases, epilepsy, 
diabetes, chronic kidney disease, congenital heart anomalies, and adverse 
effects of medical treatment. 

Maternal disorders 
covered by 
Indicator 3.1.1; 
cancers, 
cardiovascular 
diseases, diabetes, 
and chronic 
respiratory diseases 
are covered under 
Indicator 3.4.1 
Adverse effects of 
medical treatment 
are covered in the 
injuries estimation 
process.  

 

In sum, each component is estimated within the broader GBD study, with many of the measures of 
intervention coverage used as covariates to inform cause-specific models. Most of the individual 
interventions use population health survey microdata, or tabulated report data when microdata are not 
publicly available, as their primary input data sources. For vaccination, administrative data sources are 
also used to supplement survey-based estimates.  

Each cause of death considered amenable to healthcare is estimated as part of the GBD cause of death 
analysis. Risk-standardisation of non-cancer death rates is based on the joint population attributable 
fraction (PAF) of environmental or occupational and behavioral risks as quantified by the GBD 
comparative risk assessment.3 The construction of MIRs came from incidence and linked mortality data 
recorded in cancer registries. Additional information on risk-standardization and MIRs is provided in the 
next section. 
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UHC service coverage index modeling strategy  
Summary 

To construct the composite UHC service coverage index, we risk-standardised non-cancer death rates, 
constructed MIRs,   and computed intervention coverage with draw-level estimates from GBD 2017. For 
each input, 1,000 draws were used in order to estimate uncertainty. We then scaled each UHC service 
coverage index component on a scale of 0 to 100 from 1990 to 2017, and took the arithmetic mean 
across components. 
 
Risk standardisation of non-cancers 

For non-cancers, location-year-age-sex-specific cause of death estimates from GBD 2017 are used 
directly. We estimated a joint-risk exposure (ie, population attributable fraction, or PAF) for each cause, 
using all risks except three metabolic risks (high blood pressure, high total cholesterol, and high fasting 
plasma glucose), which are inextricably linked to personal healthcare, and thus would not be appropriate 
for risk-standardisation steps explained later. Assumptions about how one risk factor is mediated through 
other risk factors are needed in order to estimate the joint-risk factor burden for combinations of 
behavioural or environmental risks. To accomplish this, for every two risk factors for an outcome, we 
used published studies to estimate the fraction of risk that was mediated through the other risk. This 
resulted in a matrix of parameters containing each possible pairing of risk factors included in the GBD 
2017.3 Using this matrix, we computed the aggregated burden of disease at each level of the GBD 2017 
hierarchy and for all risk factors using the following formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐽𝐽,𝑜𝑜,𝑎𝑎,𝑠𝑠,𝑙𝑙,𝑡𝑡 = 1 −  ��1 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗,𝑜𝑜,𝑎𝑎,𝑠𝑠,𝑙𝑙,𝑡𝑡�(1 −𝑀𝑀𝑀𝑀𝑗𝑗,𝑖𝑖,𝑜𝑜)
𝐽𝐽

𝑖𝑖=1

�
𝐽𝐽

𝑗𝑗=1

 

where 𝐽𝐽 is a set of risk factors for the aggregation; 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗,𝑜𝑜,𝑎𝑎,𝑠𝑠,𝑙𝑙,𝑡𝑡 is the PAF for risk 𝑗𝑗 for cause 𝑜𝑜, age group 
𝑎𝑎, sex 𝑠𝑠, location 𝑙𝑙, and year 𝑡𝑡; and 𝑀𝑀𝑀𝑀𝑗𝑗,𝑖𝑖,𝑜𝑜 is the mediation factor for risk 𝑗𝑗 mediated through 𝑖𝑖 for cause 
𝑜𝑜. 

The aim of the risk-standardisation process is to eliminate the residual effects of localised risk exposure 
that would otherwise act as a confounding element in our ability to draw inferences about healthcare 
from mortality due to amenable causes. By imposing a global level of exposure on all locations, we de-
contextualise them and create a measure of mortality that is a more appropriate proxy for healthcare 
access and quality.  For non-cancer causes, death rates are risk-standardised using the formula: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠 = 𝐷𝐷𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠  ×  �1 −  𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠�  ×  
1

1 −  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎,𝑠𝑠
 

 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠 is the risk-standardised deaths in location 𝑙𝑙, year 𝑦𝑦, age group 𝑎𝑎, and sex 𝑠𝑠; 𝐷𝐷𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠 is the 
deaths for those specifications; 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙,𝑦𝑦,𝑎𝑎,𝑠𝑠 is the PAF for those specifications; and 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎,𝑠𝑠 is the global 
PAF over all six estimation years for age group 𝑎𝑎, and sex 𝑠𝑠. If for a given cause no risk attribution is 
present or all deaths are attributed to risks (ie, PAF of 0 or 1), the observed deaths are used. If any cause 
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has a maximum observed mean joint-risk PAF greater than 0.9 but less than 1 for a given age and sex, 
PAFs across all location years are scaled such that the maximum is scaled down to 0.9.  

Mortality-to-incidence ratios (MIRs) for cancers   

 

Due to the expansion of cancer registry data quantity and quality in GBD 2016, we tested the use of MIRs 
instead of risk-standardised death rates for the HAQ Index.4 MIRs were not produced for non-melanoma 
skin cancer (squamous-cell carcinoma) for GBD 2017 due to under-ascertainment of this cancer in 
registry data, and since MIRs calculated within the overall cancer cause-of-death estimation process are 
recalibrated to final mortality outputs, we constructed MIRs for each cancer based on post-CoDCorrect 
deaths (ie, a process that ensures internal consistently between all-cause mortality and cause-specific 
deaths) by age, sex, and location-year and final incidence estimates for the same dimensions.5 We used 
the GBD 2017 final incidence and mortality estimates by age, sex, cancer, and location‐year to generate 
the MIRs and limited the age groups to the bounds defined by the Nolte and McKee cause list. We age-
standardised mortality and incidence rates per the age standardisation process described below, and 
then took the ratio of mortality to incidence to calculate MIRs. 

Age-standardisation 
Deaths outside of the defined age groups were eliminated,1,2 as only deaths in those ages were deemed 
highly amenable to healthcare. We then aggregated cause-specific mortality rates by sex to both sexes. 
Using the GBD population age standard, we compiled risk-standardised mortality rates for non-cancers 
and the initial components of cancer MIRs (ie, mortality and incidence) for both sexes by location, year, 
and amenable cause: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑎𝑎  ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎

𝑛𝑛

𝑎𝑎=1

 

 

here 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑑𝑑 is the age-standardised risk-standardised death rate or component parts for MIRs for 
location 𝑙𝑙, and year 𝑦𝑦; 𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙,𝑦𝑦,𝑎𝑎 is the risk-standardised death rate or component parts for MIRs in 
location 𝑙𝑙, year 𝑦𝑦, and age group 𝑎𝑎; and 𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎is the population age standard for age group 𝑎𝑎. 

 

Creating the UHC service coverage index and projections based on past trends 
Using the above methodology, we created 1,000 draws of location-year index values for 32 causes of 
death amenable to healthcare. In combination with the 1,000 draws for each of the nine intervention 
coverage indicators, we created a composite measure – the UHC service coverage index – based on these 
41 components. 
 

To do this, we first log-transformed each of the amenable causes and then scaled them on a scale of 0 to 
100, with 0 being the worst observed from 1990 to 2017 and 100 being the best observed during this 
time. No transformation was needed for the intervention coverage measures, so we applied the same 
scaling approach to them as well.  
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We then took the arithmetic mean of each of the 41 components to construct the UHC service coverage 
index, by country, from 1990 to 2017. We then projected the UHC service coverage index from 2018 to 
2030 on the basis of past trends; additional detail on the projection methodologies used in the present 
study can be found in this appendix. 

 

References 
1 Barber RM, Fullman N, Sorensen RJD, et al. Healthcare Access and Quality Index based on mortality 

from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel 
analysis from the Global Burden of Disease Study 2015. The Lancet 2017; 0. DOI:10.1016/S0140-
6736(17)30818-8. 

2 GBD 2016 Healthcare Access and Quality Collaborators. Measuring performance on the Healthcare 
Access and Quality Index for 195 countries and territories and selected subnational locations: a 
systematic analysis from the Global Burden of Disease Study 2016. The Lancet Under review. 

3 Gakidou E, Afshin A, Abajobir AA, et al. Global, regional, and national comparative risk assessment of 84 
behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a 
systematic analysis for the Global Burden of Disease Study 2016. The Lancet 2017; 390: 1345–422. 

4 Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 
264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The 
Lancet 2017; 390: 1151–210. 

5 Vos T, Abajobir AA, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived 
with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the 
Global Burden of Disease Study 2016. The Lancet 2017; 390: 1211–59. 

  

272



3.8.1 UHC Service Coverage Index – Immunizations SDG Capstone 
Appendix 
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Input data & Methodological summary 

Indicator definition 

This modeling strategy pertains to the composite universal health coverage (UHC) service coverage index 
(Indicator 3.8.1) and specifically the estimation of immunization coverage for diphtheria-pertussis-tetanus 
(DTP3), measles vaccine, and three doses of the oral polio vaccine or inactivated polio vaccine (OPV3 or 
IPV3).  

Indicator 3.8.1 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.8, achieve universal health coverage, including financial risk protection, access to quality essential 
health-care services and access to safe, effective, quality and affordable essential medicines and vaccines 
for all, is measured using SDG Indicator 3.8.1, three measures of immunization coverage:  DTP3, measles, 
and polio (OPV3 and/or IPV3) among children aged 12 to 23 months. 

Input data 

The present study used data from household-level surveys as well as administrative reports of 
immunization coverage. Survey data which provided person-level information on immunization were 
identified and extracted. Major multi-country survey programs included in the analysis include the 
Demographic and Health Surveys (DHS),1 Multiple Indicator Cluster Surveys (MICS),2 Reproductive Health 
Surveys (RHS),3 Living Standards Measurement Study (LSMS) surveys,4 and World Health Surveys (WHS).5 
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We also conducted a comprehensive search of the Global Health Data Exchange (GHDx),6 as well as 
targeted internet searches and review of Ministry of Health websites, to identify national surveys and 
other multi-country survey programs. 

Administrative estimates of immunization coverage were obtained from the Joint Reporting Process,7 
through which the World Health Organization (WHO) and UNICEF collates annual estimates of 
immunization coverage reported UN member states. These immunization coverage estimates are 
separate from those synthesized by WHO, and are calculated by dividing the number of doses of a given 
vaccine delivered to the target population (i.e., children aged 12 to 23) by the number of individuals in 
that target population.  

We excluded all data sources that were not nationally representative or had high levels of missingness. 
We applied survey weights based on survey sampling frames whenever they were available to generate 
weighted national estimates of vaccination coverage accompanied by estimates of standard error (SE). 
Estimates of SE, as well as sample sizes, were used to calculate uncertainty, as described below. Any point 
estimates with sample sizes less than 50 were reviewed to ensure that they were not substantive outliers 
and would otherwise have an undue influence on our analysis.  

Modeling strategy 

Data processing 

Age splitting 

Most household surveys collect information on maternal and child health (MCH) indicators for children 
under 5 and/or mothers who gave birth within five years prior to the time of survey. To maximize data 
use for our model, we included immunization data for children aged 12 to 59 at the time of survey. 
Children younger than 12 months of age were excluded to minimize the influence of potentially censored 
observations. For each vaccine, coverage estimates were assigned to birth-cohort years based on a child’s 
age prior to the time of survey: we used responses recorded for children aged 12 to 23 months for 
immunization coverage for one year prior to the time of survey, children aged 24 to 35 months for 
coverage two years prior to the time of survey, and so forth. 

Age-specific estimates are easily computed from individual-level microdata, but many published reports 
and survey summaries present data in broader age aggregates (e.g., DTP3 coverage for children aged 12 
to 35 months). To standardize these age groups, we applied an age-splitting model used in the GBD 
study,8 as well as analyses that generated smoking and obesity prevalence by age group.9,10  

Using surveys with microdata as the reference, we used the following model to generate standardized 
age group-specific estimates of immunization coverage:  

𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 = 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 
𝑎𝑎+𝑥𝑥 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗
𝑎𝑎+𝑥𝑥   

where 𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑘𝑘 is the adjusted estimate of coverage for target age group 𝑎𝑎 in country 𝑐𝑐 and year 𝑡𝑡 of survey 
𝑘𝑘; and 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑘𝑘 

𝑎𝑎+𝑥𝑥  is coverage reported from survey 𝑘𝑘, for country 𝑐𝑐 in year 𝑡𝑡 for the age group spanning age 𝑎𝑎 
to age (𝑎𝑎 + 𝑥𝑥). The ratio of coverage between the target age group and broader age group from a survey 
𝑗𝑗 with microdata from the same country-year was used to split data from survey 𝑘𝑘. Surveys to be split 
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were ideally matched with DHS or MICS surveys. If microdata were not available for the same year, ratios 
within five years of the survey that required age-splitting were applied.  

Administrative bias adjustment 

Intervention coverage estimates based on administrative sources can be biased. Such biases may arise for 
a number of reasons, including discrepancies in the accurate reporting of services or interventions provided 
(e.g., number of vaccine doses administered) and target population (e.g., number of children in need of 
vaccines), as well as capturing these data in a timely manner from both public and private-sector facilities 
and health care providers. We implemented a vaccine-specific bias adjustment process to account for bias 
in administrative reports of immunization coverage in the JRF.  Given that the magnitude, direction, and 
cause of such biases are heterogeneous across space, time, and antigen,11,12 a vaccine-specific, time-
varying, all-location bias correction factor was used for all three antigens.  

For immunization coverage, we view individual-level data collected through population health surveys as 
the most accurate and least biased source of information of vaccination coverage, particularly for 
geographies with incomplete health information systems. We thus compute administrative bias as the ratio 
between estimates of coverage from surveys (where available) and matched administrative coverage. We 
model this bias in a spatiotemporal Gaussian process regression (ST-GPR) framework, described further in 
the subsequent section of this appendix, using the Socio-demographic Index (SDI) as a predictor. This 
method allows us to estimate antigen-specific administrative bias factors for all geographies and years since 
1980, even in places without survey data, by borrowing strength in data across space and time. The GPR 
framework properly estimates prediction errors in the data synthesis procedure by for uncertainty in bias 
ratios when generating fitted values. In this framework, more weight is given to survey data with less 
uncertainty.  

Antigen-specific modeled estimates of administrative bias are then used to adjust administrative coverage 
data for over- or under-reporting to reflect observed survey coverage. Adjusted administrative data are 
used as inputs into the trend estimation process. 

Trend estimation  

We used a spatiotemporal Gaussian process regression (ST-GPR) to synthesize point estimates from 
multiple data sources and derive a complete time series for each vaccine. This method has been used 
extensively in GBD and related studies, and accounts for uncertainty pertaining to each point estimate 
while borrowing strength across geographic space and time.10, 11,15,16 Briefly, we assumed the Gaussian 
process was defined by a mean function m(•) and covariance function Cov(•).  

We estimated the mean function using a two-step approach. Specifically, 𝑚𝑚𝑐𝑐(𝑡𝑡) can be expressed as: 

𝑚𝑚𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑋𝑋 + ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) 

where 𝑋𝑋𝑋𝑋 is a linear model and ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) is a smoothing function for the residuals; and 𝑟𝑟𝑐𝑐,𝑡𝑡 is derived from 
the linear model. The following linear model was used to model DTP3, measles, and polio coverage:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1HAQc,t +  𝛼𝛼𝑐𝑐 +  𝛾𝛾𝑅𝑅[𝑐𝑐] +  ωSR[c] +  𝜀𝜀𝑐𝑐,𝑡𝑡 
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where 𝑃𝑃𝑐𝑐,𝑡𝑡 is vaccination coverage for country 𝑐𝑐 year 𝑡𝑡; 𝐻𝐻𝐻𝐻𝑄𝑄𝑐𝑐,𝑡𝑡 is value of the Healthcare Access and 
Quality Index15 for country 𝑐𝑐 and year 𝑡𝑡;  𝛼𝛼𝑐𝑐, 𝛾𝛾𝑅𝑅[𝑐𝑐], and ωSR[c] are country, region, and super-region 
random intercepts, respectively. These estimates were then modeled through ST-GPR.  

Random draws of 1,000 samples were obtained from the distributions above for every country for a given 
vaccine. Ninety-five percent uncertainty intervals were calculated by taking the ordinal 25th and 975th 
draws from the sample distribution.  

To assess the accuracy of our modeled estimates, we performed cross-validation analyses using a 
knockout structure as previously described16. ST-GPR hyperparameters were selected on models that 
minimized the overall root-mean squared error (RMSE) of the model across a set of 10 knockouts. 
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3.8.1 UHC Service Coverage Index: Antenatal Care (ANC) SDG Capstone 
Appendix  

Flowchart 

 

Input data & Methodological summary 

Indicator definition 

This modeling strategy pertains to the composite universal health coverage (UHC) service coverage index 
(Indicator 3.8.1) and specifically the estimation of antenatal care (ANC), as defined by the proportion of 
women who attended at least one ANC visit (ANC1) and/or at least four ANC visits (ANC4) for previous 
births, as provided by a skilled attendant. 

Indicator 3.8.1b 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.8, achieve universal health coverage, including financial risk protection, access to quality essential 
health-care services and access to safe, effective, quality and affordable essential medicines and vaccines 
for all, is measured using SDG Indicator 3.8.1b, ANC1 and ANC4 coverage.  

Input data 

For the present analysis, we used individual-level microdata from population health surveys and 
tabulated survey report data on skilled ANC1 and ANC4. As defined by the World Health Organization 
(WHO), ANC is considered attended by a skilled health professional when a doctor, nurse, or trained 
midwife are in attendance.1  
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We identified and extracted survey data which provided individual-level data, and specifically among 
female respondents. Major multi-country survey programs included in the analysis include the 
Demographic and Health Surveys (DHS),1 Multiple Indicator Cluster Surveys (MICS),2 Reproductive Health 
Surveys (RHS),3 Living Standards Measurement Study (LSMS) surveys,4 and World Health Surveys (WHS).5 
We also conducted a comprehensive search of the Global Health Data Exchange (GHDx),6 as well as 
targeted internet searches and reviews of Ministry of Health websites, to identify national surveys and 
other multi-country survey programs. In addition, we utilized tabulated report data from regional WHO 
databases when available, including the PAHO7, WHO WPR8, and the WHO European Health for All 
databases9.  
 
We excluded all data sources that were not nationally representative or had high levels of missingness. 
We applied survey weights based on survey sampling frames whenever they were available to generate 
weighted national estimates of ANC1 and ANC4 coverage accompanied by estimates of standard error 
(SE). Estimates of SE, as well as sample sizes, were used to calculate uncertainty, as described below. Any 
point estimates with sample sizes less than 50 were reviewed to ensure that were not substantive 
outliers and would otherwise have an undue influence on our analysis.  
 
Due to potential bias in recall, we limited our analysis to women who gave birth up to five years prior to 
the time of survey; due to data limitations, we used a limit of up to two years for some surveys. We also 
had to standardize the definition of “skilled health professional” across countries, which varied by 
differences in quality of training or health professional roles. For this analysis, doctors, nurses, and 
midwives were included as our foundational definition for skilled ANC, and we extended this to include 
country-specific medical staff based on the number of years of training they received and/or their 
comparable ability to intervene in an emergency situation (e.g., clinical officers). Care received during an 
ANC visit by traditional health personnel was not considered a skilled ANC visit. 
 

Modeling strategy 

Data processing 

Age splitting 

Most household surveys collection information on maternal and child health (MCH) indicators for children 
under 5 and/or mothers who gave birth within five years prior to the time of survey. To maximize data 
use for our model, we included ANC information for children aged 12 to 59 months at the time of survey. 
Children younger than 12 months of age were excluded to minimize the influence of potentially censored 
observations. ANC coverage estimates were assigned to birth-cohort years based on a child’s age prior to 
the time of survey: we used responses recorded for children aged 12 to 23 months for ANC coverage for 
one year prior to the time of survey, children aged 24 to 35 months for coverage two years prior to the 
time of survey, and so forth. 

Age-specific estimates are easily computed from individual-level microdata, but many published reports 
and survey summaries present data in broader age aggregates (eg, ANC coverage for children aged 12 to 
35 months). To standardize these age groups, we applied an age-splitting model used in the GBD study,10 
as well as analyses that generated smoking and obesity prevalence by age group.11,12  
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Using surveys with microdata as the reference, we used the following model to generate standardized 
age group-specific estimates for ANC:  

𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 = 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 
𝑎𝑎+𝑥𝑥 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗
𝑎𝑎+𝑥𝑥   

where 𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑘𝑘 is the adjusted estimate of coverage for target age group 𝑎𝑎 in country 𝑐𝑐 and year 𝑡𝑡 of survey 
𝑘𝑘; and 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑘𝑘 

𝑎𝑎+𝑥𝑥  is coverage reported from survey 𝑘𝑘, for country 𝑐𝑐 in year 𝑡𝑡 for the age group spanning age 𝑎𝑎 
to age (𝑎𝑎 + 𝑥𝑥). The ratio of coverage between the target age group and broader age group from a survey 
𝑗𝑗 with microdata from the same country-year was used to split data from survey 𝑘𝑘. Surveys to be split 
were ideally matched with DHS or MICS surveys. If microdata were not available for the same year, ratios 
within five years of the survey that required age-splitting were applied.  

Bias adjustments 

Intervention coverage estimates based on administrative sources can be biased, yet the direction and 
magnitude of such biases are not universal. Some studies show that coverage estimates from 
administrative data source are systematically higher than those of survey-based estimates,13 while other 
studies show that bias directionality is more heterogeneous.14 Such biases may arise for a number of 
reasons, including discrepancies in the accurate reporting of services or interventions provided (eg, 
number of ANC visits) and target population (eg, number of children born), as well as capturing these 
data in a timely manner from both public and private sector facilities and healthcare providers.  

For ANC, we view individual-level data collected through population health surveys as the most accurate 
and least biased source of information, particularly for geographies with incomplete health information 
systems. We thus used ANC coverage estimates from household surveys to calculate country-specific 
adjustment factors: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠, 𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃�𝑎𝑎, 𝑐𝑐,𝑡𝑡� +  �𝛽𝛽𝑘𝑘𝑆𝑆𝑘𝑘

2+𝐵𝐵

𝑘𝑘=2

 +  𝜀𝜀𝑐𝑐,𝑡𝑡 

where 𝑃𝑃𝑠𝑠, 𝑐𝑐,𝑡𝑡 is the survey-based estimate for ANC coverage (𝑠𝑠) in country 𝑐𝑐 for year 𝑡𝑡; 𝑃𝑃�𝑎𝑎, 𝑐𝑐,𝑡𝑡 is the 
administrative estimate for coverage in country 𝑐𝑐 in year 𝑡𝑡; 𝑆𝑆𝑘𝑘 is a spline basis used to capture the secular 
trend in coverage; 𝛽𝛽1 is the estimated adjustment factor used to correct for the administrative bias; and 𝜀𝜀 
is the error term for country 𝑐𝑐 in year 𝑡𝑡. 

To quantify uncertainty for bias-adjusted estimates from the mixed-effects models described above, we 
calculated prediction error, 𝑃𝑃𝑃𝑃� , as follows: 

𝑃𝑃𝑃𝑃� = 𝑋𝑋2𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽) 

where 𝑣𝑣𝑣𝑣𝑣𝑣(𝛽̂𝛽) is the variance for the estimated fixed-effects coefficient of the adjustment factor and 𝑋𝑋 is 
the independent variable. Proper estimation of prediction errors is crucial as the data synthesis 
procedure, Gaussian process regression (GPR) (as described in the subsequent section), accounts for 
uncertainty from point estimates and bias adjustments when generating fitted values. More weight is 
given to data with less uncertainty. Prediction errors estimated from the bias adjustment were 
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incorporated into the data variance and propagated through the GPR step to obtain estimates of ANC 
coverage and uncertainty intervals (UIs). 

To assess the accuracy of our estimates in the bias adjustment, we performed cross-validation analyses 
by randomly holding out 20% of the sample and, if available, the corresponding administrative estimates 
for the given indicator of the same country and year, 10 separate times. We computed the average root 
mean squared errors (RMSE) across each country. Error in the bias adjustments was calculated as the 
mean difference between the adjusted administrative estimate for a given country, year, and 
corresponding survey-level estimates (which were considered the “gold-standard”). 

 

Trend estimation  

We used a spatiotemporal Gaussian process regression (ST-GPR) to synthesize point estimates from 
multiple data sources and derive a complete time series for ANC coverage. This method has been used 
extensively in GBD and related studies, and accounts for uncertainty pertaining to each point estimate 
while borrowing strength across geographic space and time.10, 11,15,16 Briefly, we assumed the Gaussian 
process was defined by a mean function m(•) and covariance function Cov(•).  

We estimated the mean function using a two-step approach. Specifically, 𝑚𝑚𝑐𝑐(𝑡𝑡) can be expressed as: 

𝑚𝑚𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑋𝑋 + ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) 

where 𝑋𝑋𝑋𝑋 is a linear model and ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) is a smoothing function for the residuals; and 𝑟𝑟𝑐𝑐,𝑡𝑡 is derived from 
the linear model. The following linear model was used for the estimation of ANC indicators:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1HAQc,t +  𝛼𝛼𝑐𝑐 +  𝛾𝛾𝑅𝑅[𝑐𝑐] +  ωSR[c] +  𝜀𝜀𝑐𝑐,𝑡𝑡 
 
where 𝑃𝑃𝑐𝑐,𝑡𝑡 is ANC coverage for country 𝑐𝑐 year 𝑡𝑡; 𝐻𝐻𝐻𝐻𝑄𝑄𝑐𝑐,𝑡𝑡 is value of the Healthcare Access and Quality 
Index16 for country 𝑐𝑐 and year 𝑡𝑡;  𝛼𝛼𝑐𝑐, 𝛾𝛾𝑅𝑅[𝑐𝑐], and ωSR[c] are country, region, and super-region random 
intercepts, respectively. These estimates were then modeled through ST-GPR. 

By definition, point estimates from a given survey-year for ANC4 cannot exceed ANC1. To ensure 
definitional consistency for levels of ANC1 and ANC4 coverage, we estimated the coverage of ANC4 by 
first calculating the ratio of ANC4/ANC1 by survey-year, modeling the ratio of ANC4/ANC1 through ST-
GPR, and subsequently multiplying out by the final estimated coverage of ANC4.  

Random draws of 1,000 samples were obtained from the distributions above for every country for a given 
vaccine. Ninety-five percent uncertainty intervals were calculated by taking the ordinal 25th and 975th 
draws from the sample distribution.  

To assess the accuracy of our modeled estimates, we performed cross-validation analyses using a 
knockout structure as previously described17. ST-GPR hyper-parameters were selected on models that 
minimized the overall root-mean squared error (RMSE) of the model across a set of 10 knockouts.  
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3.8.1 UHC Service Coverage Index: In-Facility Birth Rate (IFD) SDG 
Capstone Appendix 

Input data & Methodological summary 

 

Indicator definition 

This modeling strategy pertains to the composite universal health coverage (UHC) service coverage index 
(Indicator 3.8.1) and specifically the estimation of in-facility delivery (IFD), as defined by the proportion of 
births that were delivered in a health facility.  

Indicator 3.8.1 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.8, achieve universal health coverage, including financial risk protection, access to quality essential 
health-care services and access to safe, effective, quality and affordable essential medicines and vaccines 
for all, is measured using SDG Indicator 3.8.1c, in-facility birth rate (IFD). 

 

Input data 

Our study included data from household-level surveys as well as administrative reports of in-facility 
delivery (IFD), defined by WHO as the proportion of births in a given year delivered in a health facility.1 
Survey data which provided person-level information were identified and extracted. Major multi-country 
survey programs included in the analysis include the Demographic and Health Surveys (DHS)1, the 
Multiple Indicator Cluster Surveys (MICS)2, the Reproductive Health Surveys (RHS)3, the Living Standards 
Measurement Studies4, and the World Health Surveys (WHS)5. In additional, a comprehensive search was 
performed on the Global Health Data Exchange (GHDx)6, as well as a targeted Google search and a search 
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on the websites of national ministries of health, to identify national surveys and smaller multi-country 
surveys. In addition we utilized administrative estimates from regional WHO databases, when available, 
including the PAHO7, WHO WPR8, and the WHO European Health for All databases9.  

We excluded all data sources that were not nationally representative or had high levels of missingness. 
We applied survey weights based on survey sampling frames whenever they were available to generate 
weighted national estimates of IFD coverage accompanied by estimates of standard error (SE). Estimates 
of SE, as well as sample sizes, were used to calculate uncertainty, as described below. Any point estimates 
with sample sizes less than 50 were reviewed to ensure that there were no substantive outliers and 
would otherwise have an undue influence on our analysis.  
 

Modeling strategy 

Data processing 

Age Splitting 

Household-level surveys typically collect information about MCH indicators for children under 5 years of 
age or mothers who have given birth at most 5 years prior to the time of survey.  For the sake of utilizing 
as much data as available, we incorporated estimates for births 0–59 months prior to the survey for 
analysis. For each indicator, estimates were assigned to a given birth cohort year based on the birth age 
prior to the time of interview – we used the responses recorded for children aged 12–23 months to 
estimate coverage 1 year prior to the survey, 24–35 months to estimate coverage 2 years prior to the 
survey, and so forth.  

While information aggregated to these specific age ranges was easily extracted from surveys with person-
level data, many published reports and summaries of surveys presented data in broader age groups. We 
disaggregated these data into the age grouping of interest in this study by applying a splitting model 
previously used in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD)10, as well as in a 
studies estimating global smoking11 and obesity prevalence12.  

Using surveys that provided person-level data as references, the following model was applied on 
estimates with the broader age groups. Specifically, let 𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑘𝑘 be the adjusted estimate of coverage for a 
given indicator for the target age group 𝑎𝑎 in country 𝑐𝑐 and year 𝑡𝑡 of survey 𝑘𝑘. To disaggregate data that 
were reported in a broader age group, the following formula was used: 

 

𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 = 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 
𝑎𝑎+𝑥𝑥 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗
𝑎𝑎+𝑥𝑥   

 

Where 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑘𝑘 
𝑎𝑎+𝑥𝑥 denotes the coverage reported from survey 𝑘𝑘, for country 𝑐𝑐 in year t, but of the age group 

spanning age 𝑎𝑎 to age (𝑎𝑎 + 𝑥𝑥). The ratio of coverage between the age group of interest and the broader 
age group from a survey 𝑗𝑗 with person-level data from the same country and year was used to split data 
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from survey 𝑘𝑘. Surveys to be split were ideally matched with DHS or MICS surveys. If person-level data 
were not available for the same year, data within five years to be split were used.  

 

 

Bias adjustments 

Administrative estimates of IFD are most typically produced using data gathered from supply-side 
registries. The quality and accuracy of the data therefore depends on the completeness of the nation’s 
health information system.13 Previous studies have reported that administrative reports of MCH coverage 
indicators tend to be biased.8,12,13  

To reduce the impact of these biases on the final results, we performed adjustments on administrative 
data to account for overall systematic error. Using mixed effects models, we compared administrative 
data and survey data to derive appropriate adjustment ratios:  

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠, 𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃�𝑎𝑎, 𝑐𝑐,𝑡𝑡� +  𝜀𝜀𝑐𝑐,𝑡𝑡 

 

where 𝑃𝑃𝑠𝑠, 𝑐𝑐,𝑡𝑡 is the survey-based coverage for a specific indicator for country 𝑐𝑐 in year 𝑡𝑡, 𝑃𝑃�𝑎𝑎, 𝑐𝑐,𝑡𝑡 is the 
administrative coverage for country c in year t, 𝛽𝛽1 is the estimated adjustment factor used to correct for 
the administrative bias.   

To assess the accuracy of our estimates in the bias adjustment, we performed cross-validation analyses 
by randomly holding out 20% of the sample and, if available, the corresponding administrative estimates 
for the given indicator of the same country and year, 10 separate times. We computed the average root 
mean squared errors (RMSE) across each country. Error in the bias adjustments was calculated as the 
mean difference between the adjusted administrative estimate for a given country, year, and 
corresponding survey-level estimates (which were considered the “gold-standard”). 

 

Trend estimation  

We used a spatiotemporal Gaussian process regression (ST-GPR) to synthesize information from the 
various data sources in order to derive a complete time series for each indicator for all countries. This 
method has been used extensively in other studies to combine information from different sources, taking 
into account uncertainty for each data point as well as to interpolate nonlinear trends by borrowing 
strength across geographic space and time.9-11 Briefly, we assumed the Gaussian process was defined by a 
mean function m(•) and covariance function Cov(•).  

We estimated the mean function using a two-step approach. Specifically, 𝑚𝑚𝑐𝑐(𝑡𝑡) can be expressed as: 

𝑚𝑚𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑋𝑋 + ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) 
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where 𝑋𝑋𝑋𝑋 is a linear model and ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) is a smoothing function for the residuals; and 𝑟𝑟𝑐𝑐,𝑡𝑡 is derived from 
the linear model. The following linear model was used for the estimation of ANC indicators:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1HAQc,t +  𝛼𝛼𝑐𝑐 +  𝛾𝛾𝑅𝑅[𝑐𝑐] +  ωSR[c] +  𝜀𝜀𝑐𝑐,𝑡𝑡 
 
where 𝑃𝑃𝑐𝑐,𝑡𝑡 is IFD coverage for country 𝑐𝑐 year 𝑡𝑡; 𝐻𝐻𝐻𝐻𝑄𝑄𝑐𝑐,𝑡𝑡 is value of the Healthcare Access and Quality 
Index15 for country 𝑐𝑐 and year 𝑡𝑡;  𝛼𝛼𝑐𝑐, 𝛾𝛾𝑅𝑅[𝑐𝑐], and ωSR[c] are country, region, and super-region random 
intercepts, respectively. These estimates were then modeled through ST-GPR.  

Random draws of 1,000 samples were obtained from the distributions above for every country for a given 
vaccine. Ninety-five percent uncertainty intervals were calculated by taking the ordinal 25th and 975th 
draws from the sample distribution.  

To assess the accuracy of our modeled estimates, we performed cross-validation analyses using a 
knockout structure as previously described16. ST-GPR hyperparameters were selected on models that 
minimized the overall root-mean squared error (RMSE) of the model across a set of 10 knockouts. 
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3.8.1 UHC Index: Tuberculosis SDG Capstone Appendix 
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Input data 
Input data for modelling tuberculosis (TB) mortality among HIV-negative individuals include vital 
registration, verbal autopsy, and surveillance data. Vital registration data were adjusted for garbage 
coding (including ill-defined codes and the use of intermediate causes) following GBD algorithms and 
misclassified HIV deaths (ie, HIV deaths being assigned to other underlying causes of death such as 
tuberculosis or diarrhea because of stigma or misdiagnosis).  

Verbal autopsy data in countries with age-standardised HIV prevalence greater than 5% were removed 
because of a high probability of misclassification, as verbal autopsy studies have poor validity in 
distinguishing HIV deaths from HIV-TB deaths.  

Modelling strategy  
A general CODEm modelling strategy was used. We added a new covariate, namely the TB strain 
prevalence-weighted transmission risk. We also included the cigarettes per capita covariate. Other 
location-level covariates included in the CODEm model were the same as in GBD 2016: adult underweight 
proportion, alcohol (litres per capita), diabetes (fasting plasma glucose mmol/L), education (years per 
capita), Healthcare Access and Quality Index, lag-distributed income, indoor air pollution, outdoor air 
pollution, population density, prevalence of active tuberculosis, prevalence of latent tuberculosis 
infection, smoking prevalence, Socio-demographic Index, and a summary exposure variable reflecting the 
average exposure to all of the risk factors.  
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Covariate table 
 

Covariate Direction 

Level 1 TB prevalence 
Latent TB infection prevalence 
SEV scalar  
Alcohol per capita 
Smoking prevalence 
Cigarettes per capita 
Fasting plasma glucose 
TB strain prevalence-weighted transmission risk 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

Level 2 HAQ Index 
Adult underweight proportion 
Indoor air pollution 
Outdoor air pollution 
Population density 

- 
+ 
+ 
+ 
+ 

Level 3 Log LDI 
Education (years per capita) 
Socio-demographic Index (SDI) 

- 
- 
- 

 

Correcting for a potential misclassification of tuberculosis deaths as pneumonia deaths in 
children 
In locations with high TB burden, TB deaths may be misclassified as pneumonia deaths in children,1 and 
we addressed this potential misclassification in GBD 2017. First, we estimated the proportion of 
tuberculosis among pneumonia cases as a function of age-standardised TB incidence using data from 
eight clinical studies2,3,4,5,6,7,8,9 reporting the proportion of pneumonia cases that had tuberculosis (or the 
data to calculate them) and the age-standardised TB incidence estimates. We used a logarithmic trend 
line to fit these data. Next, we applied the estimated proportions to pneumonia deaths (estimated for 
GBD 2017) among children younger than 15 years to compute the number of deaths diagnosed with both 
pneumonia and TB, which were then added to child TB deaths from the CODEm model. Finally, these 
estimates were adjusted using CoDCorrect, which ensures that the number of deaths from each cause 
add up to all-cause mortality deaths for a given year. 
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TB strain prevalence-weighted transmission risk covariate 
We added a new TB covariate added in this round of GBD that incorporated data on the global 
distribution of TB strains and the relative risk of transmission associated with those strains. For this 
covariate, we defined TB strains according to the seven phylogenetic lineages of the Mycobacterium 
tuberculosis complex (MTBC) identified by S. Gagneaux and colleagues.1 We determined the global 
distribution of these strains using a systematic review of human TB molecular epidemiology studies from 
1990 to 2017 in PubMed and Scopus, as described in greater detail elsewhere.2 All studies that used 
population-based sampling methods or collected isolates from all culture-positive TB cases in a given 
location and time period were included. All genotypes that could be converted to phylogenetic lineages 
were extracted, including genotypes determined by spoligotyping, MIRU-VNTR typing, and PCR or whole-
genome sequencing. Studies of sub-populations, such as prison populations or drug-resistant cases only, 
were excluded. In total, 206 studies representing 85 countries and over 200,000 bacterial isolates were 
included. A map of these strains highlighted the widespread global distribution of Euro-American Lineage 
4 strains and East Asian Lineage 2 strains, and the geographic restriction of Lineage 5 and 6 strains to 
West Africa. Thirty of these studies also reported transmission chains associated with bacterial 
genotypes, as defined by genetic clustering.3 

We used spatiotemporal Gaussian process regression (ST-GPR) to model the distribution of each 
strain in each GBD location across all ages and sexes, as described in greater detail elsewhere.4 The 
covariates tested in each model included HIV age-standardised prevalence, population density, and a 
custom-made human movement covariate. The human movement covariate took into account (1) 
immigration and emigration patterns5 and (2) airplane passenger flow6 to and from each country. In the 
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ST-GPR models we assumed strong correlation and smoothing over both space and time. We then used a 
random-effects meta-analysis to determine the relative risk (RR) of transmission associated with each 
strain, as defined by genetic clustering. We used the most widespread strains, Euro-American Lineage 4 
strains, as the reference group. We found that East Asian Lineage 2 strains were associated with 
increased risk of transmission overall (Relative Risk [95% CI] = 1.24 [1.07, 1.45]), while West African 
Lineage 5 and 6 strains were associated with reduced transmission (Relative Risk [95% CI] = 0.61 [0.43, 
0.86]). We used the following formula to calculate a TB strain prevalence-weighted risk of transmission 
based on these estimates: 
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3.8.1 UHC Index: Diarrheal Diseases SDG Capstone Appendix 
 

 

 

Input data 
Cause of death. We used all available data from vital registration systems, surveillance systems 
and verbal autopsy (Table 1 and Figure 1). We checked for and excluded outliers from our data 
by country or region. We also excluded early neonatal mortality data in the Philippines (1994–
1998) and India Civil Registration System data and medically certified cause of death (MCCD) 
data in all states (1986–2013).  

Aetiologies. We conducted a systematic literature review for the proportion of diarrhoea cases 
that tested positive for each aetiology. We updated our review of literature to include studies 
published between January 2016 and May 2017. The search was performed in PubMed using the 
following search string: 
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(diarrhoea[title/abstract] OR diarrhea[title/abstract]) AND ( 2016/01/01:2017/12/31[PDat]) AND 
Humans[MeSH Terms] AND (incidence[title/abstract] OR prevalence[title/abstract] OR 

epidemiology[title/abstract] OR salmonella[title/abstract] OR aeromonad*[title/abstract] OR 
shigell*[title/abstract] OR enteropathogenic[title/abstract] OR enterotoxigenic[title/abstract] OR 

campylobacter[title/abstract] OR amoebiasis[title/abstract] OR entamoeb*[title/abstract] OR 
cryptosporid*[title/abstract] OR rotavirus[title/abstract] OR norovirus[title/abstract] OR 

adenovirus[title/abstract] OR etiology[title/abstract]) NOT (appendicitis[title/abstract] OR 
esophag*[title/abstract] OR surger*[title/abstract] OR gastritis[title/abstract] OR 

liver[title/abstract] OR case report[title] OR case-report[title] OR therapy[title] OR 
treatment[title] Crohn[title/abstract] OR “inflammatory bowel”[title/abstract] OR 

irritable[title/abstract] OR travel*[title] OR Outbreak[title] OR Review[ptyp] OR 
vomiting[title/abstract) 

Inclusion criteria included diarrhoea as the case definition, studies with a sample size of at least 
100, and studies with at least one year of follow-up. We excluded studies that reported on 
diarrhoeal outbreaks exclusively and those that used acute gastroenteritis with or without 
diarrhoea. We identified 225 studies, of which 51 met our criteria of inclusion and were 
included. We extracted data points for location, sex, year, and age. We assigned an age range 
based on the prevalence-weighted mean age of diarrhoea in the appropriate year/sex/location if 
the age of the study participants was not reported.  

We used the Global Enteric Multicenter Study (GEMS), a seven-site, case-control study of 
moderate-to-severe diarrhoea in children under 5 years,1 to calculate odds ratios for the 
diarrhoeal pathogens based on a molecular diagnostic case definition.  

For GBD 2017, we added an additional 40,000 stool samples analyzed using quantitative 
polymerase chain reaction (qPCR) from The Etiology, Risk Factors, and Interactions of Enteric 
Infections and Malnutrition and the Consequences for Child Health and Development Project 
(MAL-ED) study to the roughly 10,000 samples from the GEMS reanalysis.2–5  

 

Modelling strategy 
Cause of death. Diarrhoeal disease mortality was estimated in the Cause of Death Ensemble 
modelling platform (CODEm). We estimated diarrhoea mortality separately for males and 
females and for children under 5 years and older than 5 years. We used country-level covariates 
to inform our CODEm models (Table 2). We evaluated our diarrhoeal disease cause of death 
models using in and out of sample predictive performance.  

Aetiologies. We estimated diarrhoeal disease aetiologies independently from overall diarrhoea 
mortality using a counterfactual strategy for enteric adenovirus, Aeromonas, Entamoeba 
histolytica (amoebiasis), Campylobacter, Cryptosporidium, typical enteropathogenic Escherichia 
coli (t-EPEC), enterotoxigenic Escherichia coli (ETEC), norovirus, non-typhoidal salmonella 
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infections, rotavirus, and Shigella. Vibrio cholerae and Clostridium difficile were modelled 
separately.  

Diarrhoeal aetiologies are attributed to diarrhoeal deaths using a counterfactual approach. We 
calculated a population attributable fraction (PAF) from the proportion of severe diarrhoea cases 
that are positive for each aetiology. The PAF represents the relative reduction in diarrhoea 
mortality if there was no exposure to a given aetiology. As diarrhoea can be caused by multiple 
pathogens and the pathogens may co-infect, PAFs can overlap and add up to more than 100%. 
We calculated the PAF from the proportion of severe diarrhoea cases that are positive for each 
aetiology. We assumed that hospitalised diarrhoea cases are a proxy of severe and fatal cases. 
We used the following formula to estimate PAF:6 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ (1 −
1
𝑂𝑂𝑂𝑂

) 

Where Proportion is the proportion of diarrhoea cases positive for an aetiology and OR is the 
odds ratio of diarrhoea given the presence of the pathogen. 

We dichotomised the continuous qPCR test result using the value of the cycle threshold (Ct) that 
most accurately discriminated between cases and controls. The Ct values range from 0 to 35 
cycles representing the relative concentration of the target gene in the stool sample. A low value 
indicates a higher concentration of the pathogen while a value of 35 indicates the absence of the 
target in the sample. We used the lower Ct value when we had multiple Ct values for the 
cutpoint. The case definition for each pathogen is a Ct value that is below the established cutoff 
point.  

We used a mixed effects conditional logistic regression model to calculate the odds ratio for 
under 1 year and 1-4 years old for each of our pathogens. The stool samples from cases and 
controls in GEMS were used exclusively to calculate these odds ratios as we assumed that the 
association between pathogens and moderate-to-severe diarrhoea is a proxy for fatal outcomes. 
The odds ratio for 1-4 years was applied to all GBD age groups over 5 years. There were three 
pathogen-age odds ratios that were not statistically significant: Aeromonas and Amoebiasis in 
under 1 year and Campylobacter in 1-4 years. The mean value of the odds ratio was above 1 in 
all three cases so we transformed the odds ratios for these three exceptions only in log-space 
such that exponentiated values could not be below 1. The transformation was: 

Odds ratio = exp(log(OR) – 1)) + 1 

We modelled the proportion data using the meta-regression tool DisMod-MR to estimate the 
proportion of positive diarrhoea cases for each separate aetiology by location/year/age/sex and 
to adjust for the covariates.  

We used the estimated sensitivity and specificity of the original laboratory diagnostic test results 
from the pooled GEMS and MALED qPCR stool samples compared to the qPCR test result to 
adjust our proportion before we computed the PAF:7 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 1)

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑦𝑦 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 1)
 

We used this correction to account for the fact that the proportions we used are based on a new 
test that is not consistent with the laboratory-based case definition (qPCR versus GEMS 
conventional laboratory testing for pathogens).8 Because differences in the type of PCR used in 
the original (non-reference qPCR diagnostic) between GEMS and MALED in detecting norovirus, 
we combined the sensitivity and specificity results for norovirus such that 50% of the draws were 
coming from GEMS test results exclusively and 50% of the draws were coming from MALED test 
results exclusively. Additionally, because the original laboratory diagnostic technique used for 
Campylobacter in MALED was one not commonly used, we only used GEMS to determine the 
sensitivity and specificity of bacterial culture compared to qPCR in detecting Campylobacter.9 

Our literature review extracted the proportion of any enteropathogenic Escherichia coli (EPEC) 
without differentiating between typical (tEPEC) and atypical (aEPEC). In order to be consistent 
with the odds ratios that we obtained, we adjusted our proportion estimates of any EPEC to 
typical EPEC only. This adjustment was informed by a subset of our literature review that 
reported both atypical and typical EPEC. We estimated a ratio by super-region of tEPEC to any 
EPEC and adjusted our proportion estimates accordingly. We found that the majority of EPEC 
diarrhoea cases were positive for atypical EPEC, consistent with other published work.10  

For Vibrio cholerae (cholera), we used the literature review to estimate expected number of 
cholera cases for each country-year using the incidence of diarrhoea, estimated using DisMod-
MR, and the proportion of diarrhoea cases that are positive for cholera. We assigned cholera PAF 
using odds ratios from the qPCR results to estimate a number of cholera-attributable cases. We 
compared this expected number of cholera cases to the number reported to the World Health 
Organization at the country-year level.11 We modelled the underreporting fraction to correct the 
cholera case notification data for all countries using health system access and the diarrhoea SEV 
scalar to predict total cholera cases. We used the age-specific proportion of positive cholera 
samples in DisMod and our incidence estimates to predict the number of cholera cases for each 
age/sex/year/location. Finally, we modelled the case fatality ratio of cholera using DisMod-MR 
and to estimate the number of cholera deaths.  

For C. difficile, we modelled incidence and mortality in DisMod-MR for each age, sex, year, 
location. DisMod-MR is a Bayesian meta-regression tool that uses spatiotemporal information as 
priors to estimate prevalence, incidence, remission, and mortality for C. difficile infection. 
DisMod-MR uses a compartmental model to relate prevalence, incidence, remission, and 
mortality. We set remission in our model to 1 month.  
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Table 1. Cause-specific mortality input data. 

Input data GBD 2017 

Total data sources 19,665 geography-years 

Vital registration data 17,734 geography-years 

Sample registration data 740 geography-years 

Verbal autopsy data 1,042 geography-years 

Surveillance data 509 geography-years 

 

Figure 1. Number of geography-years of mortality data used in diarrhoea mortality modelling 

 

 

 

Table 2. The covariates used in diarrhoea mortality modelling. Table 2A shows the covariates used 
in the 0-4 years model and Table 2B shows the covariates used in the 5-95+ years model. The Level 
represents the strength of the association between the covariate and diarrhoea mortality from 1 
(proximally related) to 3 (distally related). The Direction indicates the positive or negative 
association between the covariate and diarrhoea mortality.  
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Table 2A. The covariates used in the 0-4 years model 

Level Covariate Direction 

1 

Diarrhoea SEV + 
Childhood stunting SEV + 
Sanitation SEV + 
Water SEV + 
Childhood underweight SEV + 
Childhood wasting SEV + 
Short gestation SEV + 
Low weight gestation SEV + 
Oral rehydration solution treatment - 
Safe sanitation - 
Safe water - 

2 

Vitamin A deficiency + 
Zinc deficiency + 
Healthcare access and quality index - 
Rotavirus vaccine - 
Zinc treatment for diarrhoea - 

3 

Breastfeeding SEV + 
Handwashing - 
LDI per capita - 
Maternal education years - 
Socio-demographic Index - 
Population density < 150/km2 0 
Population density > 1000/km2 0 

 

Table 2B. The covariates used in the 5-95+ years model. 

Level Covariate Direction 

1 

Diarrhoea summary exposure variable + 
Safe sanitation summary exposure variable + 
Safe water summary exposure variable + 
Improved sanitation - 
Improved water - 

2 
Healthcare access and quality index - 
Rotavirus vaccine coverage - 

3 

Education years per capita - 
LDI per capita - 
Mean BMI - 
Socio-demographic Index - 
Population density greater than 1000/km2 0 
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3.8.1 UHC Index: Lower Respiratory Infections SDG Capstone Appendix 
 
 

 

 
Input data 
Cause of death 
Lower respiratory infection (LRI) mortality was estimated in CODEm. We estimated LRI mortality 
separately for males and females and for children under 5 years and older than 5 years. We used all 
available data from vital registration systems, surveillance systems, and verbal autopsy (Table 1). We 
checked for and excluded outliers from our data by country or region. We also excluded ICD9-coded 
mortality data in Sri Lanka (1982, 1987–1992), ICD9-coded neonatal mortality data in Guatemala (1980, 
1981, 1984, 2000–2004), and medically coded cause of death data (MCCD) and Civil Registration System 
data in many Indian states (1986–2013).  
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Table 1. Summary of cause-specific mortality modelling input data.  

Input data GBD 2017 

Total data sources 19,827 geography-years 

Vital registration data 17,374 geography-years 

Sample registration data 740 geography-years 

Verbal autopsy data 1,153 geography-years 

Surveillance 560 geography-years 

 

Figure 1. The number of geography-years of LRI mortality data by GBD geography is shown 
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Aetiologies 

We updated our systematic review of scientific literature for the proportion of LRI that tested positive for 
influenza and respiratory syncytial virus (RSV) to include all data from GBD 2016 and from studies 
published between January 1, 2016 and May 26, 2017. We performed the search using PubMed and the 
following search string:  

(“lower respiratory”[title/abstract] OR pneumonia[title/abstract]) AND (2016/01/01[PDat] : 
2017/12/31[PDat]) AND (incidence OR prevalence OR epidemiology OR etiolog*[title/abstract] OR 
influenza[title/abstract] OR “respiratory syncytial virus”[title/abstract]) AND Humans[MeSH Terms] 

NOT(autoimmune[title/abstract] OR COPD [title/abstract] OR “cystic fibrosis”[title/abstract] OR 
Review[ptyp]) 

Inclusion criteria were studies that had a sample size of at least 100, studies that were at least one year in 
duration, and studies describing lower respiratory infections, pneumonia, or bronchiolitis as the case 
definition. During our literature review we identified 595 studies, of which 75 met our inclusion criteria 
and were extracted. We excluded studies that described pandemic H1N1 influenza solely and studies that 
used influenza-like illness as the case definition. We assigned an age range based on the prevalence-
weighted mean age of LRI in the appropriate year/sex/location if the ages of the study participants were 
not reported.  

We also conducted a systematic literature review of studies on the Hib vaccine and PCV effectiveness 
studies against X-ray-confirmed pneumonia and against pneumococcal and Hib disease until May 2017. 
For PCV studies, we extracted, if available, the distribution of pneumococcal pneumonia serotypes and 
the serotypes included in the PCV used in the study. No new studies were identified for GBD 2017. We 
excluded observational and case-control studies due to implausibly high vaccine efficacy estimates. Hib 
trial data were exclusively from children <5 years, so we did not include the effect of Hib on ages over 5 
years of age. PCV trial data are also frequently limited to younger populations. To understand the 
contribution of pneumococcal pneumonia in older populations, we also included PCV efficacy studies that 
used before-after approaches. 

 
Modelling strategy  
Cause of death. We used country-level covariates to inform our CODEm models (Table 2). We evaluated 
our LRI cause of death models using in and out of sample predictive performance.  

Like all models of mortality in GBD, LRI mortality models are single-cause, requiring in effect that the sum 
of all mortality models must be equal to the all-cause mortality envelope. We correct LRI mortality 
estimates, and other causes of mortality, by rescaling them according to the uncertainty around the 
cause-specific mortality rate. This process is called CoDCorrect and is essential to ensure internal 
consistency among causes of death. Before CoDCorrect, we also adjust LRI mortality for unreliable 
estimates due to improper death certification and ICD coding among elderly adults where the underlying 
cause of death should be Alzheimer’s or Parkinson’s disease. This process occurs in a step new to GBD 
2016 called OldCorrect and scales LRI mortality among adult age groups 70+ years into a new envelope 
without Alzheimer’s and Parkinson’s. Further details can be found in the main text and appendix for the 
OldCorrect process. 
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Table 2. Covariates used in LRI mortality modelling. Table 2A is for children under 5 and Table 2B shows the 
covariates used for ages 5-95+. The Level is the associated strength of relationship between the covariate 
and LRI mortality, ranked from 1 (proximally related) to 3 (distally related). The direction is the forced 
direction of the association between the covariate and LRI mortality.  

Table 2A. Covariates used in under 5 years model 

Level Covariate Direction 

1 

Childhood stunting SEV + 
Childhood underweight SEV  + 
Childhood wasted SEV + 
Indoor air pollution + 
Short gestation SEV + 
Low weight gestation + 
LRI summary exposure variable + 
Second-hand smoking prevalence + 
Antibiotics for LRI - 
Hib vaccine coverage - 
Pneumococcal conjugate vaccine coverage - 

2 

Discontinued breastfeeding SEV + 
Vitamin A deficiency + 
Zinc deficiency + 
DTP3 vaccine coverage - 
Healthcare access and quality index - 

3 

Outdoor air pollution (PM2.5) + 
Population density > 1000/km2 + 
Sanitation SEV + 
Handwashing - 
LDI per capita - 
Maternal education  - 
Socio-demographic Index - 

 

Table 2B. Covariates used in 5-95+ years model 

Level Covariate Direction 

1 

Indoor air pollution + 
LRI summary exposure variable + 
Outdoor air pollution + 
Secondhand smoking prevalence + 
Smoking prevalence + 

2 

DTP3 vaccine coverage - 
Healthcare access and quality index - 
Mean BMI - 
Pneumococcal conjugate vaccine coverage - 
Handwashing + 

3 
Education years per capita - 
LDI per capita - 
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Socio-demographic Index - 
Alcohol consumption + 
Sanitation summary exposure variable + 

 

Aetiologies  

We estimated LRI aetiologies separately from overall LRI mortality using two distinct counterfactual 
modelling strategies to estimate population attributable fractions (PAFs), described in detail below. The 
PAF represents the relative reduction in LRI mortality if there was no exposure to a given aetiology. As 
LRIs can be caused by multiple pathogens and the pathogens may co-infect, PAFs can overlap and add up 
to more than 100%. Separate strategies were used for viral – influenza and respiratory syncytial virus 
(RSV) – and bacterial – Streptococcus pneumoniae and Haemophilus influenzae type B – aetiologies. We 
did not attribute aetiologies to neonatal pneumonia deaths due to a dearth of reliable data in this age 
group. We calculated uncertainty of our PAF estimates from 1,000 draws of each parameter using normal 
distributions in log space.  

Influenza and RSV. We calculated the population attributable fraction (PAF) from the proportion of severe 
LRI cases positive for influenza and RSV. We assumed that hospitalised LRI cases are a proxy of severe 
cases. We used the following formula to estimate PAF:1 

PAF = Proportion * (1-1/OR) 

Where Proportion is the proportion of LRI cases that test positive for influenza or RSV and OR is the odds 
ratio of LRI given the presence of the pathogen. We used an odds ratio of 5.1 (3.19–8.14) for influenza 
and 9.79 (4.98–19.27) for RSV from a recently published meta-analysis.2  

We modelled the proportion data using the meta-regression tool DisMod-MR to estimate the proportion 
of LRI cases that are positive for influenza and RSV, separately, by location/year/age/sex. We accounted 
for study-level covariates in our models such as PCR as the diagnostic technique, studies that investigated 
RSV or influenza exclusively, and studies from inpatient populations. 

As the case-fatality of viral causes of pneumonia is lower than for bacterial causes, we adjusted for 
differential case-fatality by determining the aetiological fractions for mortality attributable to RSV and 
influenza (Table 3). We measured the aetiologic fractions by applying a relative case-fatality adjustment 
based on in-hospital case-fatality, which we coded to specific pneumonia aetiologies. Hospital admissions 
data of this type were limited to data from Austria, Brazil, Chile, China, Ecuador, Italy, Kenya, Mexico, New 
Zealand, the Philippines, Portugal, and the United States. We generated the pooled estimate of the case-
fatality differential between bacterial (pneumococcus, Hib) and viral aetiologies (RSV, influenza) using 
DisMod-MR to determine an age pattern for this ratio. 

Pneumococcal pneumonia and Hib. For Streptococcus pneumoniae (pneumococcal pneumonia) and 
Haemophilus influenzae type B (Hib), we calculated the population attributable fraction using a vaccine 
probe design.3,4 The ratio of vaccine effectiveness against nonspecific pneumonia to pathogen-specific 
disease represents the fraction of pneumonia cases attributable to each pathogen.  

To estimate the PAF for Hib and pneumococcal pneumonia, we calculated the ratio of vaccine 
effectiveness against nonspecific pneumonia to pathogen-specific pneumonia (Equations 1 and 3). We 
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estimated a study-level estimate of PAF from a meta-analysis of these ratios. To estimate the PAF for Hib, 
we only used randomised controlled trials because of implausibly high values of vaccine efficacy in case-
control studies. To estimate the PAF for pneumococcal pneumonia, we included RCTs and before and 
after vaccine introduction longitudinal studies. 

We adjusted the study-level PAF estimate by vaccine coverage and expected vaccine performance to 
estimate country- and year-specific PAF values. For pneumococcal pneumonia, we adjusted the PAF by 
the final Hib PAF estimate and by vaccine serotype coverage. Finally, we used an age distribution of PAF 
modelled in DisMod to determine the PAF by age. Because of an absence of data describing vaccine 
efficacy against Hib in children older than 2 years, we did not attribute Hib to episodes of LRI in ages 5 
years and older. 

We used a vaccine probe design to estimate the PAF for pneumococcal pneumonia and (Hib) by first 
calculating the ratio of vaccine effectiveness against nonspecific pneumonia to pathogen-specific 
pneumonia at the study level (Equations 1 and 2).3–5 We then adjusted this estimate by vaccine coverage 
and expected vaccine performance to estimate country- and year-specific PAF values (Equations 3 and 4). 

1) 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 

 

 

2) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1 −  𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗(1−𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

 

 

3) 𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 =  𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∗
�1−𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�

(1−𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)
 

 

4) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵∗�1−𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃∗𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�

�1−𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�∗�1−
𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃∗𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

�1−𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻∗𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻∗𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂�
�
 

 
Where 𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is the vaccine efficacy against nonspecific pneumonia, 𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 is the vaccine efficacy 
against invasive Hib disease, 𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is the vaccine efficacy against serotype-specific 
pneumococcal pneumonia, 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the serotype-specific vaccine coverage for PCV,6  𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  
is the Hib effectiveness in the community (0.8)7,  𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻 is the final PAF for Hib, 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃  is the PCV 
coverage, 𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻 is the Hib coverage by country, and 𝑉𝑉𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  is the vaccine effectiveness in the 
community (0.8).8  

For Hib, we assumed that the vaccine efficacy against invasive Hib disease is the same against Hib 
pneumonia. For pneumococcal pneumonia, a recent study in adults9 found that the vaccine efficacy 
against invasive pneumococcal disease may be significantly higher than against pneumococcal 
pneumonia. We used this ratio to adjust estimates of vaccine efficacy against invasive pneumococcal 
disease from other studies. However, recognising that the study is unique in that it uses a urine antigen 
test among adults, we added uncertainty around our adjustment using a wide uniform distribution 
(median 0.65, 0.3–1.0). This has increased the estimates of pneumococcal pneumonia mortality in a 
meaningful way. 
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The only substantive changes to the cause of death estimation for LRI in GBD 2017 were the addition of 
new cause of death data and inclusion of several additional covariates. The ratio of mortality in bacterial 
to viral aaetiologies was updated for GBD 2017 and the new results substantively increase the attribution 
of influenza and RSV to LRI deaths.  

Table 3: The median values for the ratio of viral to bacterial pneumonia case fatality ratio by age is shown. 
These estimates are modelled using hospital-based, ICD-coded admissions and mortality for aetiology-
specified pneumonia. Values in parentheses represent 95% uncertainty interval. 

Age Group Ratio 
Early Neonatal 0.59 (0.36–0.84) 
Late Neonatal 0.58 (0.37–0.84) 
Post Neonatal 0.58 (0.41–0.77) 
1 to 4 0.69 (0.64–0.74) 
5 to 9 0.85 (0.77–0.93) 
10 to 14 0.84 (0.79–0.89) 
15 to 19 0.83 (0.78–0.87) 
20 to 24 0.82 (0.77–0.87) 
25 to 29 0.82 (0.78–0.86) 
30 to 34 0.82 (0.79–0.85) 
35 to 39 0.82 (0.8–0.85) 
40 to 44 0.82 (0.8-0.85) 
45 to 49 0.82 (0.8–0.85) 
50 to 54 0.82 (0.79–0.85) 
55 to 59 0.82 (0.79–0.86) 
60 to 64 0.82 (0.79–0.86) 
65 to 69 0.82 (0.8–0.85) 
70 to 74 0.82 (0.79–0.85) 
75 to 79 0.82 (0.78–0.85) 
80 to 84 0.83 (0.8–0.87) 
85 to 89 0.86 (0.83–0.89) 
90 to 94 0.89 (0.85–0.93) 
95 to 99 0.92 (0.86–0.97) 
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3.8.1 UHC Index: Upper Respiratory Infections SDG Capstone Appendix 
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Input data 
Vital registration and surveillance data from the cause of death database were used. Outliers were 
identified by systematic examination of data points. Data points that violated well-established age or time 
trends, were inconsistent with other country- or region-specific points, or that resulted in extremely high 
or low mortality rates were determined to be outliers. 

Modelling strategy  
A generic CODEm approach was used to estimate mortality due to upper respiratory infections (URI) in 
GBD 2017. In GBD 2016, mortality from URI was modelled using a negative binomial regression. It was 
determined that a negative binomial regression was an appropriate approach for estimating URI due to a 
small number of deaths due to URI in the cause of death database. However, due to changes in how we 
redistribute cause of death codes, more deaths were attributed to URI in the COD database and thus it 
was determined that a generic CODEm approach is feasible for estimating URI mortality in GBD 2017. The 
covariates used are displayed below.   

Level Covariate Direction 

1 Smoking prevalence + 

2 

Indoor pollution + 
Outdoor pollution 

(PM2.5) 
+ 

Healthcare Access 
and Quality Index + 

3 

SDI - 
LDI - 

Education (years per 
capita) 

- 
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3.8.1 UHC Index: Diphtheria SDG Capstone Appendix 
 

 
 
Modelling strategy overview 
For this round of the GBD, we implemented two separate methods for modelling diphtheria mortality 
based on the quality of available vital registration data. For countries with well-defined vital registration 
(ie, “data-rich” countries), we used a cause of death ensemble model (CODEm) approach. For the 
remaining countries, we used a custom count model approach.  
 
Data-rich countries 
For data-rich countries, we used a CODEm strategy in count space to model vital registration (VR) data 
through time using the following country covariates:  
 

Level Covariate Direction 

1 

Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) 

- 

Health systems access (capped) - 
Healthcare access and quality (HAQ) index - 
Wasting (proportion under 2SD) + 

3 
Lagged-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
Models in count space had lower out-of-sample root mean squared error (RMSE) than rate-space models 
and were thus chosen as final models for these data-rich countries. 
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Custom count model  
To inform the custom model of diphtheria mortality, vital registration and surveillance data from the 
cause of death database were used. Data with very high cause fractions (those greater than the 99th 
percentile values) were excluded. 
 
Due to the small number of recorded deaths, diphtheria mortality was modelled using a negative 
binomial regression. Cause fractions representing number of deaths as a proportion of the all-cause 
mortality envelope were regressed on the diphtheria-pertussis-tetanus third-dose (DPT3) vaccine 
coverage covariate with dummy variables for each GBD age group, with death counts as the dependent 
variable and the offset as the total number of deaths:  

Yij = β0 + β1 DTP3ij + agea ij + eij , 

where Yij is the log-transformed cause fraction, β0 is the fixed-effect intercept, β1 is the fixed-effects 
slope on vaccine coverage, agea ij is the dummy variable for each GBD age group in the estimation, eij is 
the residual, i is the year, and j is the location. The negative binomial model was used here over a Poisson 
count model because it more appropriately accounts for large variance (over-dispersion) in the data. 
Uncertainty was estimated by taking 1,000 iterations of the predictions based on the variance-covariance 
matrix and a random sample of the dispersion parameter from a gamma distribution. 
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3.8.1 UHC Index: Whooping cough (Pertussis) SDG Capstone Appendix 
 

 
 
Modelling strategy overview 
We implemented two separate methods for modeling pertussis mortality based on the quality of 
available vital registration data. For countries with well-defined vital registration (ie, “data-rich” 
countries), we used a cause of death ensemble model (CODEm) approach. For the remaining countries, 
we used a natural history model approach. For all countries, we estimated for the age range post-
neonatal to 59 years. 
 
Data-rich countries 
For data-rich countries (ie, countries with vital registration more than 65% complete for all GBD 
estimation years, 1980–2017), we used a strategy in count space to model vital registration (VR) data 
through time using the following country covariates:  
 

Level Covariate Direction 

1 

Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) 

- 

Health system access (capped) - 
Malnutrition  + 
Healthcare access and quality (HAQ) index - 

3 
Lagged-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
Models in count space (as opposed to rate space) had lower out-of-sample root mean squared error 
(RMSE) and were thus chosen as final models for these countries. 
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Natural history model 
To inform the natural history model that was used as the modelling approach for countries without well-
defined vital registration, we used data from the following sources: World Health Organization (WHO) 
case notifications; historical case notifications for the United Kingdom back to 1940; vital registration (VR) 
data in countries defined as “data-rich”; case fatality data identified by collaborators; and case fatality 
data identified through systematic literature reviews. The PubMed search query was: (whooping cough 
[Title/Abstract]) OR (pertussis [Title/Abstract]) AND (case fatality [Title/Abstract]). Studies were included if 
they reported case fatality rate, number of deaths, and number of cases. Studies were excluded if they 
included non-representative samples only.  
 
Pertussis mortality in these remaining countries was modelled using a natural history-based model 
because CODEm does not predict well for countries without data.  
 
First, we modelled log-transformed incidence from whooping cough case notifications reported to WHO 
(1985–2017) with diphtheria-tetanus-pertussis dose three (DTP3) vaccination coverage using the 
following equation: 

Yij = β0 + β1 DTP3ij + uj + eij , 

where Yij is the log-transformed incidence rate (in cases per 100,000 persons using WHO case 
notifications and GBD populations), β0 is the fixed effect intercept, β1 is the fixed effects slope on the log-
transformed proportion of unvaccinated individuals, uj is the country random effect, eij is the residual, i is 
the year, and j is the location. Historical data of UK pertussis cases and UK DTP3 coverage rates (both back 
to 1940) were also used to inform the incidence model. The random effect by country allowed for 
registration completeness to vary by country.  
 
The results of this model were then used to predict incidence as a function of vaccine coverage. To 
correct for underreporting in case notifications, we used a value of the random effect that matched the 
highest random effect in a high-income region – Switzerland (which has a pertussis monitoring system 
which captures a high percentage of cases) – to get an implied attack rate assumed to be the same for all 
unvaccinated populations. Uncertainty was estimated by taking 1,000 iterations of the predictions based 
on the variance-covariance matrix.  
 
Second, we modelled the pertussis case fatality rate using a negative binomial model with the healthcare 
access and quality (HAQ) index as a covariate: 

Yij = β0 + β1HAQij + uj + eij , 

where Yij is the number of deaths (using pertussis cases as the offset term); β0 is the fixed-effect 
intercept; β1, is the fixed-effects slopes on the healthcare access and quality (HAQ) index; uj is country-
level random effects; eij is the residual; i is the year; and j is the location. Uncertainty was estimated by 
taking 1,000 iterations of the predictions based on the variance-covariance matrix and a random sample 
from a gamma distribution of the dispersion parameter.  
 
Finally, whooping cough deaths were calculated at the 1,000-draw level as 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 . 

We estimated overall number of deaths and then assigned an age-sex distribution based on the age- and 
sex-specific patterns found in the cause of death data. 

313



3.8.1 UHC Index: Tetanus SDG Capstone Appendix 
 

 
Input data 
Mortality data from vital registration, verbal autopsy, and surveillance sources were used in tetanus 
cause of death models. Data were excluded if they largely conflicted with the majority of data from 
other studies conducted either in the same or different countries in the same region with similar 
sociodemographic characteristics. 
 
Modelling strategy  
A count-space cause of death ensemble modelling strategy (CODEm) was used. We ran separate models 
by age (under 1 year and 1 to 95+ years of age), sex (male and female), and data quality (data-rich and 
global). We used the following covariates for the under-1 models: 
 

Level Covariate Direction 

1 
Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) - 

Tetanus toxoid coverage - 

2 

In-facility deliveries (proportion) - 
Skilled birth attendance (proportion - 
Health systems access (capped) - 
Healthcare access and quality index (HAQ) - 

3 
Lagged-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
and the following covariates for the 1+ models: 
 

Level Covariate Direction 

1 Diphtheria-tetanus-pertussis third-dose 
vaccination coverage (DTP3) - 

2 Health systems access (capped) - 
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Healthcare access and quality index (HAQ) - 

3 

Sanitation (proportion) - 
Lagged-distributed income (LDI) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
Models in count space had lower out-of-sample root mean squared error (RMSE) than rate-space 
models and were thus chosen as final models for these data-rich countries. 
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3.8.1 UHC Index: Measles SDG Capstone Appendix 
 

 
 
Modelling strategy overview 
We implemented two separate methods for modelling measles mortality based on the quality of 
available vital registration data. For countries with well-defined vital registration (ie, “data-rich” 
countries), we used a cause of death ensemble model (CODEm) approach. For the remaining countries, 
we used a natural history model approach. For all countries, we estimated for the age range post-
neonatal to 59 years. 

Data-rich countries 
For data-rich countries, we used a CODEm strategy in count space to model vital registration (VR) data 
through time using the following country covariates:  
 

Level Covariate Direction 
1 Measles-containing vaccination dose one (MCV1) - 
2 Healthcare access and quality (HAQ) index - 

3 
Health systems access (capped) - 
Socio-demographic Index (SDI) - 
Mean years of education per capita - 

 
Covariates including measles-containing vaccination dose two (MCV2) coverage were excluded due to 
their collinearity with MCV1. Models in count space (as opposed to rate space) had lower out-of-sample 
root mean squared error (RMSE) and were thus chosen as final models for these countries. 
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Natural history model  
To inform the natural history model, we used data from the following sources: World Health 
Organization (WHO) case notifications from 1995 to 2017 (most recently released in June 2018); 
additional case notification sources identified by collaborators (eg, Japan and USA subnational 
surveillance); vital registration (VR) data in countries with well-defined vital registration data; and case 
fatality data identified through systematic literature reviews. Studies were included in the literature 
review if they reported case fatality rate, number of deaths, and number of cases. Studies were 
excluded if they were conducted on non-representative samples. 
 
Measles mortality in the non-data-rich countries was modelled using a natural-history-based model.  
 
First, we modelled measles incidence with a mixed-effects linear regression of case notifications from 
WHO (1995–2017) on both doses of routine measles vaccination rates (MCV1 and MCV2) and 
supplementary immunization activity (SIA) coverage using the following equation: 

Yij = β0 + β1MCV1ij + β2MCV2ij + βa3SIAaij + uj + eij , 

where Yij is the log-transformed incidence rate (in cases per 100,000 persons using WHO case 
notifications and GBD populations); β0 is the fixed-effect intercept; β1, β2, and βa3 are the fixed-effects 
slopes on the log-transformed proportion of population without the MCV1 vaccine, log-transformed 
proportion of population without the MCV2 vaccine, and supplementary vaccination coverage 
(administered doses over the target population of all under-15s) lagged by a=1-5 years, respectively; uj 

is the super-region, region, and country-level random effects; eij is the residual; i is the year; and j is the 
location.  
 
The results of this mixed effects regression model were then used to predict location-year-specific 
incidence as a function of routine vaccine coverage and SIAs. To correct for underreporting in case 
notifications, we added the effect of a 95% attack rate, assumed to be the same across all unvaccinated 
populations. Uncertainty was estimated by taking 1,000 iterations of the predictions based on the 
variance-covariance matrix. For locations in three super-regions – high-income, Central Europe/Eastern 
Europe/Central Asia and Latin America and Caribbean – we used reported measles cases as incident 
cases. More information on this part of the natural history model can be found in the non-fatal methods 
appendix for this round of the GBD. 
 
Second, measles case fatality ratio was modelled using a mixed effects negative binomial regression 
using the Socio-demographic Index (SDI) as a country covariate and three indicators (hospital-based or 
not; outbreak or not; and rural or urban/mixed) as study-level covariates, with country random effects: 

Yij = β0 + β1SDIij + β2hospitalij + β3outbreakij + β3ruralij + uj + eij , 

where Yij is the number of deaths (using measles cases as the offset term); β0 is the fixed-effect 
intercept; β1, β2, β3, and β4 are the fixed-effects slopes on the Socio-demographic Index (SDI) and 
hospital, outbreak, and rurality study-level covariates; uj is country-level random effects; eij is the 
residual; i is the year; and j is the location. Uncertainty was estimated by taking 1,000 iterations of the 
predictions based on the variance-covariance matrix and uncertainty in country random effects. The fit 
of the model was evaluated using diagnostic plots of predicted versus observed values. 
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Finally, estimated deaths were calculated at the 1,000-draw level from the two sets of custom model 
predictions as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 . 

We estimated overall number of deaths and then assigned an age-sex distribution based on the global-
level age- and sex-specific patterns found in the cause of death data. 
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3.8.1 UHC Index: Neonatal disorders SDG Capstone Appendix 
 

Unadjusted deaths by location/year/age/sex due to preterm birth complications

YLLs

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
neonatal disorders 

(parent or sub-
cause)

CodCorrect
Location-level 

covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Vital registration 
data

Verbal autopsy data

Surveillance data

Sibling history data

 

Input data 
Mortality for five causes are modeled within “neonatal disorders”: preterm birth complications, 
neonatal encephalopathy and birth trauma, neonatal sepsis and other infections, hemolytic disease and 
neonatal jaundice, and other neonatal disorders. An overall neonatal disorders “parent” envelope is also 
estimated, to which all neonatal causes are squeezed. 

For the neonatal disorders envelope, preterm birth complications, neonatal encephalopathy and birth 
trauma, neonatal sepsis and other infections, hemolytic disease and neonatal jaundice, and other 
neonatal disorders, vital registration and surveillance were the majority of data sources used for GBD 
2017 to estimate number of deaths from each condition. In Indian states, only verbal autopsy was used 
to inform estimates. Only deaths among males and females under age 5 were modelled, in four separate 
age groups: early neonatal period, late neonatal period, post-neonatal period, and 1-4 years. Data points 
were selected as outliers if they were implausibly high, low, or significantly conflicted with established 
age or temporal patterns.  

Modelling strategy  
For GBD 2017, the standard CODEm modelling approach was used to model each of the neonatal 
conditions. This same method was employed in GBD 2013, 2015, and 2016.  

Varying levels of data quality and coding issues may still have affected our results. Validation studies 
suggest that verbal autopsy methods tend to be less accurate for cause of death ascertainment in the 
neonatal age groups.1–4 Thus, for GBD 2017, except for the Indian states, the majority of verbal autopsy 
data were excluded. 
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All neonatal causes used the following pool of covariates in covariate selection: 

Level Covariate Direction 
1 Indoor air pollution (all cooking fuels) + 

Smoking prevalence (reproductive age-standardized) + 
2 Antenatal care (4 visits) coverage (proportion) - 

In-facility delivery (proportion) - 
Live births 35+ (proportion)  + 

 Skilled birth attendance (proportion) - 
 Health system access (capped) - 
 Healthcare access and quality index - 
 Age-standardised underweight (weight-for-age) SEV + 
3 Education (years per capita) - 

Lag distributed income per capita (I$) - 
Total fertility rate + 
Socio-demographic Index - 
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Death in Infants and Children. Geneva, Switzerland: World Health Organization Department of 
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Health; The London School of Hygiene and Tropical Medicine, 1999. 

2 Kalter HD, Gray RH, Black RE, Gultiano SA. Validation of postmortem interviews to ascertain selected 
causes of death in children. Int J Epidemiol 1990; 19: 380–6. 

3 Quigley MA, Armstrong Schellenberg JR, Snow RW. Algorithms for verbal autopsies: a validation study 
in Kenyan children. Bull World Health Organ 1996; 74: 147–54. 

4 Snow RW, Armstrong JR, Forster D, et al. Childhood deaths in Africa: uses and limitations of verbal 
autopsies. The Lancet 1992; 340: 351–5. 
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3.8.1 UHC Index: Peptic ulcer disease SDG Capstone Appendix 

YLLs

Vital registration 
data

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
peptic ulcer disease

CodCorrect
Location-level 

covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Input data 
Data used to estimate mortality of peptic ulcer disease consisted of vital registration data from the cause 
of death (COD) database. We marked data as outliers in instances where garbage code redistribution and 
noise reduction, in combination with small sample sizes, resulted in unreasonable cause fractions, and 
data that violated well-established time or age trends.  

Modelling strategy  
We modelled deaths due to peptic ulcer disease with a standard CODEm model using the cause of death 
database and location-level covariates as inputs. The model followed standard parameters, with the 
exception that the start age of the model was 1 year instead of 0 and the linear floor rate was lowered to 
0.0001 in order to better capture low data. We hybridised separate global and data-rich models to 
acquire unadjusted results, which we finalised and adjusted using CoDCorrect to reach final years of life 
lost (YLLs) due to peptic ulcer disease. The covariates tried and their expected strengths and directions 
are unchanged in GBD 2017 compared to GBD 2016. 

Covariate Level Direction 
Alcohol (litres per capita) 1 1 
Cumulative cigarettes (10 years) 1 1 
Cumulative cigarettes (5 years) 1 1 
Lag distributed income (per capita) 3 -1 
Sanitation (proportion with access) 2 -1 
Smoking (prevalence) 
Maternal education (years per capita) 
Improved water source (proportion with access) 
Socio-demographic Index 
Vegetables (grams adjusted) 
Healthcare access and quality index 

1 
3 
2 
3 
2 
2 

1 
-1 
1 
-1 
0 
-1 
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3.8.1 UHC Index: Stroke (Cerebrovascular Disease) SDG Capstone 
Appendix 
 

YLLs

Vital registration 
data

Verbal autopsy data

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
Stroke

Location-level 
covariates

Input data

Process

Results

Database

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Reference life table

Cause of death 
database

Disability weights

Nonfatal

Burden estimation

Cause of death

Covariates

CodCorrect

Adjusted 
deaths by 

location/year/
age/sex

 

Input data 
Verbal autopsy and vital registration data were used to model cerebrovascular disease. We reassigned 
deaths from verbal autopsy reports for cerebrovascular disease to the parent cardiovascular disease for 
both sexes for those under 20 years of age. We outliered non-representative subnational verbal autopsy 
data points. We also outliered ICD8, ICD9 BTL, and ICD10 Tabulated data points which were inconsistent 
with the rest of the data and created implausible time trends. Data points from sources which were 
implausibly low in all age groups and data points that were causing the regional estimates to be 
improbably high were outliered. 

 
Modelling strategy  
We used a standard CODEm approach to model deaths from stroke. The covariates included in the 
ensemble modelling process are listed in the table below. Apart from the updated strategy to reassign 
mis-coded deaths which should have been attributed to Alzheimer’s and other dementias, Parkinson’s 
disease, or atrial fibrillation and flutter, there have been no substantive changes from the approach used 
in GBD 2016.  
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Table: Selected covariates for CODEm models, stroke 
Covariate Transformation Level Direction 
Summary exposure variable, stroke None 1 1 
Cholesterol (total, mean per capita) None 1 1 
Smoking prevalence None 1 1 
Systolic blood pressure (mmHg) None 1 1 
Trans fatty acid None 1 1 
Mean BMI None 2 1 
Elevation over 1500m (proportion) None 2 -1 
Fasting plasma glucose None 2 1 
Outdoor pollution (PM2.5) None 2 1 
Indoor air pollution None 2 1 
Healthcare access and quality index None 2 -1 
Lag distributed income per capita (I$) Log 3 -1 
Socio-demographic Index None 3 0 
Omega-3 (kcal/capita, adjusted) Log 3 -1 
Fruits (kcal/capita, adjusted) None 3 -1 
Vegetables (kcal/capita, adjusted) None 3 -1 
Nuts and seeds (kcal/capita, adjusted) None 3 -1 
Whole grains (kcal/capita, adjusted) None 3 -1 
Pulses/legumes (kcal/capita, adjusted) None 3 -1 
PUFA adjusted (percent) None 3 -1 
Alcohol (litres per capita) None 3 0 
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3.8.1 UHC Index: Appendicitis SDG Capstone Appendix 

YLLs

Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
appendicitis

CodCorrectLocation-level 
covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Vital registration 
data

Verbal autopsy data

Vital Registration - 
Sample

 

Input data 
Data used to estimate appendicitis mortality consisted of vital registration and verbal autopsy data from 
the cause of death (COD) database. We outliered data in instances where garbage code redistribution 
and noise reduction, in combination with small sample sizes, resulted in unreasonable cause fractions; 
and data that violated well-established time or age trends.  

Modelling strategy  
We modelled deaths due to appendicitis with a standard CODEm model using the cause of death 
database and location-level covariates as inputs. The model followed standard parameters, with the 
exception that the start age of the model was 1 year old instead of 0 and the linear floor rate was lowered 
to 0.0001 in order to better capture low data. We hybridized separate global and data-rich models to 
acquire unadjusted results, which we finalised and adjusted using CodCorrect to reach final YLLs due to 
appendicitis.   There were no significant changes in the modelling process between GBD 2016 and GBD 
2017.  

Level Covariate Direction 

2 
Healthcare access and quality index - 
Fruits adjusted (g) - 
Vegetables adjusted (g) - 

3 

Education (years per capita) - 
Log LDI (I$ per capita) - 
Socio-demographic Index - 
Health system access (capped) - 
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3.8.1 UHC Index: Inguinal, Femoral, and Abdominal Hernias SDG Capstone 
Appendix 
 

YLLs

Vital registration 
data

Verbal autopsy data

Garbage code 
redistribution

CODEm models

Unadjusted deaths by 
location/year/age/sex 

due to inguinal, femoral, 
and abdominal hernia

CodCorrectLocation-level 
covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

 

Input data 
Vital registration and verbal autopsy data were used to model this cause. We marked data as outliers in 
instances where garbage code redistribution and noise reduction, in combination with small sample sizes, 
resulted in unreasonable cause fractions.  We also marked as outliers those data that violated well-
established time or age trends. Methods for assigning outlier status were consistent across both vital 
registration and verbal autopsy data.  

 
Modelling strategy  
We modelled deaths due to inguinal, femoral, and abdominal hernias with a standard CODEm model 
using the cause of death database and location-level covariates as inputs. The model followed standard 
parameters, with the exception that the start age of the model was 1 year instead of 0 and the linear 
floor rate was lowered to 0.0001 in order to better capture low data. We hybridised separate global and 
data-rich models to acquire unadjusted results, which we finalised and adjusted using CoDCorrect to 
reach final years of life lost (YLLs) due to inguinal, femoral, and abdominal hernias. In contrast to GBD 
2016, covariates for smoking and BMI were included for possible selection during CODEm modelling in 
GBD 2017. 
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Covariate Level Direction 
Education (years per capita) 3 -1 
Lag distributed income (per capita) 
Socio-demographic Index 
Healthcare access and quality index 

3 
3 
2 

-1 
0 
-1 

Cumulative cigarettes (10 years) 1 1 
Cumulative cigarettes (5 years) 1 1 
Smoking prevalence 1 1 
Body mass index (mean) 1 -1 
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3.8.1 UHC Index: Gallbladder and Biliary Diseases SDG Capstone Appendix 
 

YLLs

Vital registration 
data

Garbage code 
redistribution

CODEm models

Unadjusted deaths by 
location/year/age/sex 
due to gallbladder and 

biliary disease

CodCorrectLocation-level 
covariates

Input data

Process

Results

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

 

Input data 
Data used to estimate mortality of gallbladder and biliary diseases consisted of vital registration data from 
the cause of death (COD) database. We outliered data in instances where garbage code redistribution 
and noise reduction, in combination with small sample sizes, resulted in unreasonable cause fractions; 
and data that violated well-established time or age trends.  
 

Modelling strategy  
We modelled deaths due to gallbladder and biliary diseases with a standard CODEm model using the 
cause of death database and location-level covariates as inputs. The model followed standard 
parameters, with the exception that the start age of the model was 1 year old instead of 0 and the linear 
floor rate was lowered to 0.0001 in order to better capture low data. We hybridised separate global and 
data-rich models to acquire unadjusted results, which we finalised and adjusted using CodCorrect to 
reach final years of life lost (YLLs) due to gallbladder and biliary diseases. In GBD 2016 we added the 
Healthcare Access and Quality (HAQ) index covariate and replaced the animal fats (kcal per capita) 
covariate with an updated saturated fats covariate (adjusted percent). There were no significant changes 
in the modelling process between GBD 2016 and GBD 2017. 
 

Level Covariate Direction 

1 
Body-mass index (mean) + 
Saturated fats (adjusted percent) + 

2 

Alcohol (litres per capita) + 
Healthcare access and quality index - 
Red meats (grams adjusted) + 
Population over 65 (proportion) + 

3 Socio-demographic Index 0 
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Lag distributed income (per capita) 0 
Education (years per capita) 0 
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3.8.1 UHC Index: Epilepsy SDG Capstone Appendix 
 

YLLs

Vital registration 
data

Verbal autopsy data
Garbage code 
redistribution

CODEm models

Unadjusted deaths 
by location/year/

age/sex due to 
epilepsy

CodCorrect
Location-level 

covariates

Input data

Process

Results

Database

Disability weights
Nonfatal

Burden estimation

Cause of death

  Covariates

Noise reductionICD mapping Age-sex splittingStandardize 
input data

Adjusted 
deaths by 

location/year/
age/sex

Reference life table

Cause of death 
database

Surveillance data

 
Input data 
Data used to estimate epilepsy mortality included vital registration (VR), verbal autopsy, and China 
mortality surveillance data from the cause of death (COD) database. Our outlier criteria were to exclude 
data points that (1) were implausibly high or low relative to global or regional patterns, (2) substantially 
conflicted with established age or temporal patterns, or (3) significantly conflicted with other data 
sources based from the same locations or locations with similar characteristics (ie, Socio-demographic 
Index). 

Based on these criteria, we excluded ICD-9 BTL data for Sri Lanka, Fiji, and Kiribati as the estimates varied 
from year to year between zero and high values. We also excluded the Survey of Causes of Death Data 
and Medical Certification of Cause of Death Data for India, as these data types were not consistent with 
the Sample Registration System Data and would have led to discontinuities in our estimates over time.   

 
Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to epilepsy. Separate 
models were conducted for male and female mortality, and the age range for both models was 28 days–
95+ years. There were no substantial changes for GBD 2017. The covariates used are displayed below.   

 

Level Covariate Direction 
1 pig meat consumption (kcal per capita) + 

pigs (per capita) + 
SEV scalar: epilepsy + 
mean systolic blood pressure (mmHg) + 

2 healthcare access and quality index - 
mean body-mass index + 
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mean serum total cholesterol (mmol/L) + 
3 cumulative cigarettes (10 years) + 

cumulative cigarettes (5 years) + 
education (years per capita) - 
log LDI (per capita) - 
Socio-demographic Index - 
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3.8.1 UHC Index: Chronic Kidney Disease SDG Capstone Appendix 

Vital registration 
data

CKD YLLs

Verbal autopsy data

Standardize input 
data ICD mapping Age-sex splitting Garbage code 

redistribtuion Nosie reduction Cause of death 
database
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due to CKD
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Reference life table

Input data

ProcessResults

Database

Disability weights

Nonfatal

Burden estimation

Cause of death

  Covariates

Input data  

Vital registration and verbal autopsy data were used to model mortality due to chronic kidney disease. 
Outliers were identified by systematic examination of data points for all location-years. Data were 
standardised and mapped according to the GBD causes of death ICD mapping method. These data were 
then age-sex split, and appropriate redistribution of garbage code data was performed. Data points that 
violated well-established age or time trends or that resulted in extremely high or low cause fractions were 
determined to be outliers. Deaths due to congenital kidney anomalies (cystic kidney disease and reflux 
hydronephrosis) were attributed to chronic kidney disease, marking a change from GBD 2015, when 
these deaths were assigned to congenital anomalies.  

Modelling strategy  
The estimation strategy used for fatal chronic kidney disease is largely similar to methods used in GBD 
2016. A standard CODEm model with location-level covariates was used to model deaths due to chronic 
kidney disease. Iterations of models were assessed at the location/year/age group/sex level to determine 
whether data points merited exclusion via outliering. Unadjusted death estimates were adjusted using 
CoDCorrect to produce final estimates of YLLs. The covariates used are displayed below.   

Level Covariate Direction 

1 

Diabetes fasting plasma glucose (mmol/L) + 
Diabetes age-standardised prevalence (proportion) + 
Mean systolic blood pressure (mmHg) + 
Mean BMI + 
Healthcare access and quality index  − 

2 

Mean cholesterol + 
Total calories (kcal per capita) − 
Red meat (kcal per capita)  0 
Whole grains (kcal per capita) 0 
Animal fat (kcal per capita) 0 

3 
Socio-demographic Index  0 
Education (years per capita) − 
Log LDI ($I per capita)  − 

331



Chronic Kidney Disease subtypes 
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due to CKD due to 
diabetes mellitus type 1 

  

Input data  
We estimated deaths due to five subtypes of chronic kidney disease: diabetes mellitus (DM) type 1, 
diabetes mellitus (DM) type 2, hypertension, glomerulonephritis, and other causes. Data from end-stage 
renal disease registries were used to inform estimates of proportion of CKD mortality attributable to each 
CKD subtype. Age-specific data on the proportion of ESRD by subtype was available from the United 
States, Australia, New Zealand, Nigeria, and Russia. Given the geographic spread in availability of age-
specific proportion data, input data were not age-split, marking a change from GBD 2016.  

Vital registration (VR) data were excluded from estimates, as aetiology coding in VR sources was 
considered highly variable and inconsistent between countries.  

Modelling strategy  
We ran DisMod-MR 2.1 models including diabetes prevalence and mean systolic blood pressure as 
country-level covariates to obtain estimates of proportions for each subtype by location, year, age, and 
sex. Data for CKD due to overall DM were more widely available than data by type of DM. In order to 
make use of all available data, we modelled the proportion of CKD due to overall DM, DM type 1, and DM 
type 2. Proportion of CKD due to DM type 1 and DM type 2 were then scaled to sum to the proportion of 
overall DM at the gender, age, and country-matched level. The results from all subtype-specific models 
were adjusted so that estimates across the subtypes equaled 1 at each of 1,000 draws. These adjusted 
proportions were applied to the parent CKD CODEm model. 
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Model Covariate Value  Exponentiated 
CKD proportion due 
to diabetes mellitus 

Diabetes age-
standardised 
prevalence  

0.49 
(0.36–0.61) 

1.63 
(1.44–1.84) 

CKD proportion due 
to hypertension 

Mean systolic 
blood pressure  

 0.30 
(0.010–1.05) 

1.35  
(1.01–2.86) 
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3.8.1 UHC Index: Congenital Birth Defects SDG Capstone Appendix 
Neural tube defects, congenital heart anomalies, orofacial clefts, Down syndrome, Turner syndrome, 
Klinefelter syndrome, other chromosomal disorders, congenital musculoskeletal anomalies, urogenital 
congenital anomalies, digestive congenital anomalies, and other congenital birth defects. 
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Input data 
For GBD 2017, input data for estimating mortality due to congenital anomalies was centrally extracted, 
processed, and stored in the causes of death (CoD) database. Vital registration (VR) was the dominant 
data type, followed by verbal autopsy (VA) and surveillance. Those CoD data sources that specified the 
sub-cause of birth defect were included in estimation of both the parent congenital anomalies model as 
well as in sub-type-specific models.  

For GBD 2017, data exclusions were limited. The majority of VA data were outliered in those over 5 years 
old as the age patterns were unreliable and led to poor model performance in the under-5 age groups. 
We also excluded some data sources from the parent model where only a subset of sub-causes were 
specified (eg, congenital heart disease, neural tube defects, and other congenital anomalies) and the sum 
of the sub-causes clearly represented systematic underreporting of one of the sub-causes. Systematic 
underreporting was suspected when sex- and age-specific rates were more than an order of magnitude 
lower than neighboring or comparable locations. Data sources for those locations were still included by 
default for sub-cause-specific models because under-reporting of the total was not assumed to 
necessarily be associated with under-reporting of all of the component conditions.  
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Modelling strategy  
All types of congenital anomalies were estimated using cause of death ensemble modeling (CODEm) for 
GBD 2017, as was done for previous iterations of the GBD study. Specific causes included neural tube 
defects, congenital heart anomalies, orofacial clefts, Down syndrome, other chromosomal anomalies, 
congenital musculoskeletal anomalies, urogenital congenital anomalies, digestive congenital anomalies, 
and other congenital birth defects. We assumed no mortality from either Klinefelter syndrome or Turner 
syndrome, for which we model non-fatal outcomes only. For GBD 2017, we modelled congenital 
anomalies as a cause of death for ages 0-69 years only, assuming that all mortality from congenital 
conditions occurs before age 70 years of age.  

For GBD 2016, we added three new causes to the congenital anomalies: congenital musculoskeletal and 
limb anomalies; urogenital congenital anomalies; and digestive congenital anomalies. We made no 
additions to the causes of congenital anomalies for GBD 2017. 

Covariates selected for CODEm model of overall congenital birth defects 

Covariate Transformation Level Direction 
Maternal alcohol consumption during 
pregnancy (proportion) 

None 1 Positive 

In-facility delivery (proportion) None 1 Negative 
Live births 35+ (proportion) None 1 Positive 
Folic acid unadjusted (ug) None 1 Negative 
Legality of abortion None 2 Negative 
Antenatal care (1 visit) coverage 
(proportion) 

None 2 Not specified 

Smoking prevalence (reproductive-age-
standardised) 

None 2 Positive 

Antenatal care (4 visits) coverage 
(proportion) 

None 2 Negative 

Healthcare access and quality index None 2 Negative 
Education (years per capita) None 2 Negative 
Alcohol (litres per capita) None 3 Positive 
Fruits unadjusted (g) None 3 Positive 
Outdoor air pollution (PM2.5) None 3 Positive 
Indoor air pollution (all cooking fuels) None 3 Positive 
Socio-demographic Index None 3 Negative 
Vegetables unadjusted (g) None 3 Positive 

 

Covariates selected for CODEm model of neural tube defects 

Covariate Transformation Level Direction 
Health system access (capped) None 1 Negative 
Fruits adjusted (g) None 2 Negative 
Vegetables adjusted (g) None 2 Negative 
Healthcare access and quality index None 2 Negative 
Education (years per capita) None 3 Negative 
LDI (I$ per capita) Log 3 Negative 
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Socio-demographic Index None 3 Negative 
 

Covariates selected for CODEm model of congenital heart anomalies 

Covariate Transformation Level Direction 
Maternal alcohol consumption during 
pregnancy (proportion) 

None 1 Positive 

Socio-demographic Index Log 2 Negative 
Smoking prevalence (reproductive-age-
standardised) 

None 2 Positive 

Diabetes age-standardised prevalence 
(proportion) 

None 2 Positive 

Healthcare access and quality index None 2 Negative 
Legality of abortion None 2 Negative 
Antenatal care (1 visit) coverage (proportion) None 2 Negative 
In-facility delivery (proportion) None 2 Negative 
Education (years per capita) None 2 Negative 
Alcohol (litres per capita) None 3 Positive 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 
Skilled birth attendance (proportion) None 3 Negative 
Live births 35+ (proportion) None 3 Positive 

 

Covariates selected for CODEm model of cleft lip and cleft palate 

Covariate Transformation Level Direction 
Indoor air pollution (all cooking fuels) None 1 Positive 
Diabetes age-standardised prevalence 
(proportion) 

None 2 Positive 

Maternal alcohol consumption during 
pregnancy (proportion) 

None 2 Positive 

Healthcare access and quality index None 2 Negative 
Outdoor air pollution (PM2.5) None 2 Positive 
Legality of abortion None 2 Negative 
Skilled birth attendance (proportion) None 2 Negative 
Smoking prevalence (reproductive-age-
standardised) 

None 2 Positive 

Vegetables unadjusted (g) None 3 Not specified 
Alcohol (litres per capita) None 3 Positive 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 
Education (years per capita) None 3 Negative 
Fruits unadjusted (g) None 3 Not specified 
Antenatal care (1 visit) coverage (proportion) None 3 Negative 
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Covariates selected for CODEm model of Down syndrome 

Covariate Transformation Level Direction 
Live births 35+ (proportion) None 1 Positive 
Legality of abortion None 1 Negative 
Live births 40+ (proportion) None 1 Positive 
Socio-demographic Index None 2 Negative 
LDI (I$ per capita) Log 2 Negative 
In-facility delivery (proportion) None 2 Negative 
Healthcare access and quality index None 2 Negative 
Maternal alcohol consumption during pregnancy 
(proportion) None 3 Positive 
Antenatal care (1 visit) coverage (proportion) None 3 Negative 
Education (years per capita) None 3 Negative 
Indoor air pollution (all cooking fuels) None 3 Positive 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 
Vegetables unadjusted (g) None 3 Negative 
Smoking prevalence (reproductive age-
standardised) None 3 Positive 

 

Covariates selected for CODEm model of other chromosomal abnormalities 

Covariate Transformation Level Direction 
Live births 35+ (proportion) None 1 Positive 
Live births 40+ (proportion) None 1 Positive 
Legality of abortion None 1 Negative 
LDI (I$ per capita) Log 2 Negative 
Healthcare access and quality index None 2 Negative 
Antenatal care (4 visits) coverage (proportion) None 2 Negative 
Antenatal care (1 visit) coverage (proportion) None 2 Negative 
In-facility delivery (proportion) None 2 Negative 
Maternal alcohol consumption during pregnancy 
(proportion) None 2 Positive 
Socio-demographic Index None 3 Not specified 
Alcohol (litres per capita) None 3 Positive 
Smoking prevalence (reproductive age-
standardised) None 3 Positive 
Education (years per capita) None 3 Negative 
Skilled birth attendance (proportion) None 3 Negative 

 

Covariates selected for CODEm model of congenital musculoskeletal and limb anomalies 

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy 
(proportion) None 1 Positive 
Legality of abortion None 1 Negative 
In-facility delivery (proportion) None 2 Negative 
Diabetes age-standardised prevalence (proportion) None 2 Positive 
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Socio-demographic Index None 2 Negative 
Healthcare access and quality index None 2 Negative 
Indoor air pollution (all cooking fuels) None 2 Positive 
Smoking prevalence (reproductive age standardised) None 2 Positive 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 
Alcohol (litres per capita) None 3 Positive 
Vegetables unadjusted (g) None 3 Not specified 
Fruits unadjusted (g) None 3 Not specified 
Education (years per capita) None 3 Negative 
Antenatal care (1 visit) coverage (proportion) None 3 Negative 

 

Covariates selected for CODEm model of urogenital congenital anomalies 

Covariate Transformation Level Direction 
Smoking prevalence (reproductive age-
standardised) None 1 Positive 
Maternal alcohol consumption during pregnancy 
(proportion) None 1 Positive 
Healthcare access and quality index None 2 Negative 
Diabetes age-standardised prevalence (proportion) None 2 Positive 
Socio-demographic Index None 2 Negative 
Outdoor air pollution (PM2.5) None 2 Positive 
In-facility delivery (proportion) None 2 Negative 
Indoor air pollution (all cooking fuels) None 2 Positive 
Antenatal care (1 visit) coverage (proportion) None 3 Negative 
Alcohol (litres per capita) None 3 Positive 
Education (years per capita) None 3 Negative 
LDI (I$ per capita) Log 3 Negative 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 

 

Covariates selected for CODEm model of digestive congenital anomalies  

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy 
(proportion) None 1 Positive 
Smoking prevalence (reproductive age-
standardised) None 1 Positive 
Indoor air pollution (all cooking fuels) None 2 Positive 
Diabetes age-standardised prevalence (proportion) None 2 Positive 
Socio-demographic Index None 2 Negative 
Prevalence of obesity (age-standardised) None 2 Positive 
In-facility delivery (proportion) None 2 Negative 
Healthcare access and quality index None 2 Negative 
Alcohol (liters per capita) None 3 Positive 
Health system access (capped) None 3 Negative 
Education (years per capita) None 3 Negative 
Vegetables unadjusted (g) None 3 Not specified 
Antenatal care (1 visit) coverage (proportion) None 3 Negative 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 
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Fruits unadjusted (g) None 3 Not specified 
LDI (I$ per capita) Log 3 Negative 

 

Covariates selected for CODEm model of other congenital birth defects 

Covariate Transformation Level Direction 
Maternal alcohol consumption during pregnancy 
(proportion) None 1 Positive 
Live births 35+ (proportion) None 1 Positive 
Education (years per capita) None 2 Negative 
Smoking prevalence (reproductive age-
standardised) None 2 Positive 
Legality of abortion None 2 Negative 
In-facility delivery (proportion) None 2 Negative 
Indoor air pollution (all cooking fuels) None 2 Positive 
Healthcare access and quality index None 2 Negative 
Antenatal care (1 visit) coverage (proportion) None 3 Negative 
Diabetes age-standardised prevalence (proportion) None 3 Positive 
LDI (I$ per capita) Log 3 Negative 
Socio-demographic Index None 3 Negative 
Antenatal care (4 visits) coverage (proportion) None 3 Negative 
Alcohol (litres per capita) None 3 Positive 
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3.9.1, 7.1.2, and 11.6.2 Household Air Pollution SDG Capstone Appendix 
Flowchart 
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Indicator definition 

This modeling strategy encompassed the indicator associated with deaths attributable to household air 
pollution (3.9.1). 
Indicator 3.9.1 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.9, by 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, 
water and soil pollution and contamination, is measured using SDG Indicator 3.9.1, deaths attributable to 
household air pollution and ambient air pollution per 100,000. 

Indicator 7.1.2 

As a component of SDG Goal 7. Ensure access to affordable, reliable, sustainable, and modern energy for 
all, SDG Target 7.1, by 2030, ensure universal access to affordable, reliable and modern energy services, is 
measured using SDG Indicator 7.1.2, risk weighted prevalence of population using unsafe cooking fuel, 
which comes from household air pollution (HAP). 

 

Input Data & Methodological Summary 
Exposure 
Case definition 
Exposure to household air pollution from solid fuels (HAP) is defined as the proportion of households 
using solid cooking fuels. The definition of solid fuel in our analysis includes coal, wood, charcoal, dung, 
and agricultural residues.  
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Input data 
Data were extracted from the standard multi-country survey series such as Demographic and Health 
Surveys (DHS), Living Standards Measurement Surveys (LSMS), Multiple Indicator Cluster Surveys (MICS), 
and World Health Surveys (WHS), as well as country-specific survey series such as Kenya Welfare 
Monitoring Survey and South Africa General Household Survey. To fill the gaps of data in surveys and 
censuses, we also downloaded and updated HAP estimates from WHO Energy Database and extracted 
from literature through systematic review. Each nationally or sub-nationally representative data point 
provided an estimate for the percentage of households using solid cooking fuels. Estimates for the usage 
of solid fuels for non-cooking purpose were excluded, i.e. primary fuels for lighting. The database, with 
estimates from 1980 to 2017, contained about 680 studies from 150 countries. As updates to systematic 
reviews are performed on an ongoing schedule across all GBD causes and risk factors, an update for 
household air pollution will be performed in the next 1-2 iterations. 

Modelling strategy  
Household air pollution was modelled at household level using a three-step modelling strategy that uses 
linear regression, spatiotemporal regression and Gaussian Process Regression (GPR). The first step is a 
mixed-effect linear regression of logit-transformed proportion of households using solid cooking fuels. 
The linear model contains maternal education, proportion of population living in urban areas, and lagged-
distributed income as covariates and has nested random effect by GBD region, and GBD super region 
respectively. The full ST-GPR process is specified elsewhere this appendix. No substantial modelling 
changes were made in this round compared to GBD 2016. 

Theoretical minimum-risk exposure level 
For cataract, the TMREL is defined as no households using solid cooking fuel. For outcomes that utilise 
evidence based on the Integrated Exposure Response (IER), the TMREL is defined as uniform distribution 
between 2.4 and 5.9 ug/m3.  

Relative risks 
In addition to the previously included outcomes of lower respiratory infections (LRI), stroke, Ischemic 
Heart Disease (IHD), Chronic Obstructive Pulmonary Disease (COPD), lung cancer, and cataract, in GBD 
2017 we added Type II Diabetes as a new outcome of household air pollution. The relative risk for 
cataracts was extracted from a meta-analysis and is 2.47 with 95% (1.61, 3.73).1 GBD currently only 
estimates cataracts as an outcome for females. 

In GBD 2017, we adopted a new approach for risk attribution using the Integrated Exposure-Response 
Function (IER). Updates to the IER and the new joint-estimation PAF approach is described in the Ambient 
Particulate Matter appendix.  

PM2.5 mapping value  
In order to use the IER curve, we must estimate the exposure to particulate matter with diameter of less 
than 2.5 micrometers (PM2.5). Since GBD 2015 we have been using a mapping model relying on a 
database of now almost 90 studies which measures PM2.5 exposure in households using solid cooking 
fuel. Using socio-demographic index and study-level factors as covariates, we predict exposure for all 
location-years.  

In GBD 2017, we updated the model to estimate the individual exposure to PM2.5 over and above 
ambient levels due to the use of solid cooking fuel. We did this by subtracting off the estimated ambient 
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level PM2.5 for the location-year of each study in the database before inputting them into the model. By 
doing this we have independent estimates for PM2.5 exposure due to ambient and household solid fuel 
use. 

These exposures are cross-walked to values for men, women, and children by generating the ratio of each 
group’s mean exposure to the overall mean personal exposure. The resulting location, year, sex, and age 
specific PM2.5 exposure values are used as inputs in the IER and attributable burden calculation process.  

 

References  
1. Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J, Chafe Z, et al. Millions Dead: How Do We 
Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air 
Pollution. Annu Rev Public Health. 2014;35(1):185–206. 
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3.9.2, 6.1.1, 6.2.1 WaSH SDG Capstone Appendix 

 

Input data & Methodological Summary 

Indicator definition 
This modeling strategy encompassed the indicator associated with deaths attributable to unsafe water, 
sanitation, and hygiene (WaSH) (3.9.2). 

For GBD 2016, the WaSH category is an aggregate of the risk estimates for water (6.1.1), hygiene (6.2.1b) 
and sanitation (6.2.1a). These are modeled independently and then aggregated together to generate the 
overall risk estimates for deaths attributable to WaSH. 

Indicator 3.9.2 

As a component of SDG Goal 3. Ensure healthy lives and promote well-being for all at all ages, SDG Target 
3.9 by 2030, substantially reduce the number of deaths and illnesses from hazardous chemicals and air, 
water and soil pollution and contamination, is measured using SDG Indicator 3.9.2, deaths attributable to 
unsafe WaSH per 100,000. 

Indicator 6.1.1 

As a component of SDG Goal 6. Ensure availability and sustainable management of water and sanitation 
for all, SDG Target 6.1, by 2030, achieve universal and equitable access to safe and affordable drinking 
water for all, is measured using SDG Indicator 6.1.1, risk-weighted prevalence of population using 
unsafe/unimproved water sources. 

Indicator 6.2.1a 

As a component of SDG Goal 6. Ensure availability and sustainable management of water and sanitation 
for all, SDG Target 6.2, by 2030, achieve access to adequate and equitable sanitation and hygiene for all 
and end open defecation, paying special attention to the needs of women and girls and those in 
vulnerable situations, is measured using SDG Indicator 6.2.1a, risk-weighted prevalence of population 
using unsafe sanitation practices. 

Indicator 6.2.1b 

As a component of SDG Goal 6. Ensure availability and sustainable management of water and sanitation 
for all, SDG Target 6.2, by 2030, achieve access to adequate and equitable sanitation and hygiene for all 
and end open defecation, paying special attention to the needs of women and girls and those in 
vulnerable situations, is measured using SDG Indicator 6.2.1b, risk-weighted prevalence of population 
with no access to a handwashing facility. 
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3.9.2 and 6.1.1 Unsafe Water SDG Capstone Appendix 
Flowchart 
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Input data & methodological summary 
Exposure 
Case definition 
For GBD 2017, exposure to unsafe water was defined based on reported primary water source used by 
the household and use of household water treatment (HWT) to improve the quality of drinking water 
before consumption. Water sources were defined as “improved” based on the JMP designation,1 which 
includes piped water as improved water, and households with access to piped water connection to the 
house, yard, or plot were defined as having access to piped water supply. Solar treatment, chlorine 
treatment, boiling, or the use of filters were all established as effective point-of-use household water 
treatments based on effect sizes calculated from network meta-analysis. 

Input data 
The search for usable household surveys and censuses was conducted using the Global Health Data 
Exchange (GHDx) database. HWT input data is primarily limited to two large survey series (DHS and 
MICS) due to data availability. Water source data includes censuses and nationally representative 
surveys such as DHS, MICS, AIS, and WHS. For each survey, household sample weights were multiplied 
by the number of household members to produce a weighting scheme that estimates proportion of 
individuals, not proportion of households, exposed to a given indicator. Surveys and censuses were then 
tabulated to the two water source and two water treatment categories of interest for each location. 

Modelling 
Water source data is modelled using an ordinal framework, with two distinct models: prevalence of 
piped water and proportion of improved water (excluding piped) within the non-piped population. Both 
models produce results for each unique location, year combination. This ordinal framework allows us to 
estimate the category with the most data (piped water prevalence) and leverage that estimate to 
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anchor the estimates for improved and unimproved water categories. The results of the improved 
proportion model are multiplied by the piped water prevalence to calculate improved water prevalence. 
The sum of improved and piped water prevalence are subtracted from 1 to yield unimproved water 
prevalence.  

HWT categories are estimated in a similar ordinal framework, by modelling prevalence of individuals 
using no water treatment methods and proportions of households that boil/filter water within the 
population of households that engage in treatment methods. The prevalence of individuals that 
boil/filter drinking water is calculated by multiplying the proportion that boil/filter modelled previously 
times prevalence of any water treatment (estimated by subtracting prevalence of no treatment from 1). 
The prevalence of individuals that treat their water using solar/chlorine methods was estimated by 
subtracting the sum of prevalence of no treatment estimates and prevalence of filter/boil treatment 
from 1. By year and location, each of the above categories are modelled using a 3-step modelling 
scheme of mixed effect linear regression followed by spatio-temporal Gaussian process regression (ST-
GPR), which produces full time series estimates for each GBD 2017 location. Socio-demographic index 
(SDI), a composite metric combining education per capita, income per capita, and fertility, was set as a 
fixed effect in the linear regression since it proved to be a significant predictor. Random effects were set 
at GBD 2017 region and super-region levels to fit the models but were not used in the predictions. 

The process of vetting and validating models was accomplished primarily through an examination of ST-
GPR scatter plots by GBD 2017 location from 1990-2017. Any unfitting data points were re-inspected for 
error at the level of extraction and survey implementation, and subsequently excluded from analysis if 
deemed appropriate. In addition to SDI, a number of different potential fixed effects were considered, 
including lag-distributed income and urbanicity, but SDI proved to be the strongest predictor of the 
unsafe water categories. Uncertainty in the estimates was initially formed based on standard deviation 
by survey, then propagated through ST-GPR modelling by means of confidence intervals around each 
data point that reflect the point-estimate specific variance. 

Once models are vetted, full time series outputs from ST-GPR modelling are then converted from 
proportion to prevalence by year and geography and then rescaled to form 9 mutually exclusive 
categories that sum up to 1. The table below provides the final result of this rescaling. 

 

Category Definition 

 
Unimproved, no HWT 

Proportion of individuals that primarily use unimproved source, and do not 
use any HWT to purify their drinking water. 

Unimproved, chlorine/solar Proportion of individuals that primarily use unimproved source, and solar or 
chlorine treatment to purify their drinking water. 

 
Unimproved, boil/filter 

Proportion of individuals that primarily use unimproved source, and boil or 
filter to purify their drinking water.  

 
Improved water except piped, 
no HWT 

Proportion of individuals that primarily use improved sources other than 
piped water supply, and do not use any HWT to purify their drinking water.  
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Improved water except piped, 
chlorine/solar 

Proportion of individuals that primarily use improved sources other than 
piped water supply, and use solar or chlorine treatment to purify their 
drinking water.  

Improved water except piped,  
boil/filter 

Proportion of individuals that primarily use improved sources other than 
piped water supply, and boil/filter their drinking water.  

 
Basic piped water, no HWT 

Proportion of individuals that primarily use basic piped water supply, and do 
not use any HWT to purify their drinking water 

Basic piped water, 
chlorine/solar 

Proportion of individuals that primarily use basic piped water supply, and use 
solar or chlorine water treatment to purify their drinking water.  

 
Basic piped water, boil/filter 

Proportion of individuals that primarily use basic piped water supply, and boil 
or filter to purify their drinking water 

High-quality (HQ) piped water, 
boil/filter 

Proportion of individuals that primarily use basic piped water supply, and boil 
or filter to purify their drinking water 

 

We modelled the microbiological quality of piped water sources primarily using data a review by Bain et 
al.1 that measured proportion of piped water sources contaminated with fecal indicators. We use the 
value generated from this model to split the prevalence of piped water into basic piped water and high 
quality piped water by location, year, age, and sex. 

A substantial limitation in our analysis is the paucity of data on HWT and piped water quality. The 
inclusion of more location-specific data on water treatment utilisation at the household level can greatly 
improve our estimates in future iterations. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for unsafe water is defined as all households have access to 
high quality piped water that has been boiled or filtered before drinking. 

Relative risks 
For GBD 2017, unsafe water was paired with one outcome-diarrheal diseases-given evidence provided 
by relative risk studies. A meta-analysis by Wolf et al.3 provided the bulk of the relative risk evidence for 
the relationship between unsafe water and diarrheal diseases. This meta-analysis was updated through 
a literature review that searched for related intervention studies post-2014 conducted in PubMed. 
Search terms used were identical to those provided by Wolf et al.3 Relative risk values for water-source 
interventions and point-of-use treatment interventions were calculated using network meta-analysis 
approach so as to include studies that differ in control groups within the same analysis. This analysis 
produced distinct relative risks for each water source and water treatment category. The combined 
effect of a source intervention and point-of-use intervention was assumed to be multiplicative in order 
to match GBD 2017 exposure definitions.  
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Input data & methodological summary 
Exposure 
Case definition 
Exposure to unsafe sanitation is defined based on the primary toilet type used by households. Improved 
facilities are defined as such based on JMP designation (WHO). Sewer connection toilets included flush 
toilets or any toilet with connection to the sewer or septic tank. 

Input data 
The search for usable household surveys and censuses was conducted using the Global Health Data 
Exchange (GHDx) database. For each survey, household sample weights were multiplied by the number 
of household members to produce a weighting scheme that estimates proportion of individuals, not 
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proportion of households, exposed to a given indicator. Surveys and censuses were then tabulated to 
two sanitation categories, sewer connection and improved sanitation, for each location. Data in 
tabulated form was lower priority to add to models and was only updated when time permitted. 

Modeling 
A change made for GBD 2017 was to model sanitation categories in an ordinal framework instead of 
independent models. Two distinct indicators were estimated: the prevalence of individuals using sewer 
connection or septic tank facilities and the proportion of individuals with improved sanitation within the 
population not connected to sewer or septic tank. This ordinal framework allows us to estimate the 
category with the most data (sewer connection/septic tank prevalence) and leverage that estimate to 
anchor the estimates for improved and unimproved sanitation categories. The results of the improved 
proportion model are multiplied by the sewer connection/septic tank prevalence to calculate improved 
sanitation prevalence. The sum of improved and sewer connection/septic tank prevalence are 
subtracted from 1 to yield unimproved sanitation prevalence.  

The two indicators were modeled using a 3-step modeling scheme of mixed effect linear regression 
followed by spatio-temporal Gaussian process regression (ST-GPR), which produced full time series 
estimates for each GBD 2017 location. Socio-demographic index (SDI), a composite metric combining 
education per capita, income per capita, and fertility, was set as a fixed effect in the linear regression 
since it proved to be a significant predictor. Random effects were set at GBD 2017 region and super-
region levels to fit the models but were not used in the predictions. 

The process of vetting and validating models was accomplished primarily through an examination of ST-
GPR scatter plots by GBD 2017 location from 1990-2017. Any unfitting data points were re-inspected for 
error at the level of extraction and survey implementation, and subsequently excluded from analysis if 
deemed appropriate. In addition to SDI, a number of different potential fixed effects were considered, 
including lag-distributed income and urbanicity, but SDI proved to be the strongest predictor of unsafe 
sanitation in terms of magnitude of the coefficient. Uncertainty in the estimates was initially 
constructed based on standard deviation around each survey mean, then propagated through ST-GPR 
modeling by incorporating the variance of each data point in the Gaussian process regression step. A 
data point with high variance, for example, would contribute relatively less influence to the model than 
a data point with lower variance. 

Once models are vetted, full time series outputs from ST-GPR modeling are then converted from 
proportion to prevalence by year and geography and then rescaled to form three mutually exclusive 
categories that sum up to 1. The table below provides the final result of this rescaling. 

 

Category Definition 

Unimproved sanitation Proportion of individuals that use unimproved sanitation 
facilities.  

Improved sanitation Proportion of individuals with access to improved 
sanitation facilities, excluding sewer connection or septic 
tank.  

Sanitation facilities with sewer connection or 
septic tank 

Proportion of individuals with access to toilet facilities with 
sewer connection or septic tank. 
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Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for unsafe sanitation was defined as all individuals have 
access to a sanitation facility with sewer connection. 

Relative risks 
For GBD 2017, unsafe sanitation was only paired with one outcome, diarrheal diseases. A meta-analysis 
by Wolf et al. 2014 provides the bulk of the relative risk evidence for the relationship between unsafe 
sanitation and diarrheal diseases. This meta-analysis was updated through a literature review that 
searched for related intervention studies post-2014 conducted in PubMed. Search terms used were 
identical to those provided by Wolf et al. 2014.  
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6.2.1a Unsafe Hygiene Capstone Appendix 
 

Flowchart 
Unsafe Handwashing

Input data

Process

Results

Database

Risk factors

Burden estimation

Covariates

Input Data

National household and 
health examination surveys

Proportion of individuals 
with access to 

handwashing facility

Spatio-temporal 
Gaussian process 

regression

All individuals with access to 
handwashing station

Theoretical minimum-
risk exposure level

Observational Studies

Cohort studies
Meta-analysis/meta-
regression of relative 

risks

Relative risks by 
risk and cause (i.e. 
no handwashing 

and diarrhea)

Population 
attributable 

fractions by risk, 
cause, age, sex, 
and geographyRandomized Intervention 

studies

Population 
attributable 

fractions by risk 
aggregate, cause, 

age, sex, and 
geography

Exposure by risk, 
year, and 

geography

Deaths, YLLs, YLDs, 
and DALYs 

attributable to 
each risk by age, 

sex, year, 
geography

Calculate PAFs using 
exposure, relative risks, 

and TMREL

Exposure

Relative risks

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Covariate: Socio-
Demographic Index

 
Input data & methodological summary 
Exposure 
Case definition 
Unsafe hygiene is defined as lack of access to a handwashing station with available soap and water. We 
estimated the burden of unsafe hygiene in both developed and developing settings. 

Input data 
Since water and soap availability data are very limited, only country-specific Demographic Health 
Surveys (DHS) and Malaria Indicator Survey Series (MICS) conducted after 2006 were included as input 
data. 

Modelling strategy 
By year and location, proportion of households with handwashing facility is modelled using a 3-step 
modelling scheme of mixed effect linear regression followed by spatio-temporal Gaussian process 
regression (ST-GPR), which outputs full time series estimates for each GBD 2017 location. Socio-
demographic index (SDI), a composite index that include income per capita, education, and fertility, was 
set as a fixed effect in the linear regression since it proved to have significant coefficient. Random 
effects were set at GBD 2017 region and super-region levels to fit the model but were not used in the 
predictions. 

The process of vetting and validating models was accomplished primarily through an examination of ST-
GPR scatter plots by GBD 2016 location from 1990-2016. Any data points lacking face validity were re-
inspected for error at the level of extraction and survey implementation, and subsequently excluded 

350



from analysis if deemed appropriate. In addition to SDI, a number of different potential fixed effects 
were considered, including lag-distributed income and urbanicity. However, SDI proved to be the 
strongest predictor. 

A considerable limitation for when estimating handwashing practices for over 190 independent 
locations around the world was data sparseness. Even when data were published on handwashing 
prevalence, the definition was often altered from the GBD 2017 standard definition or it may only have 
pertained to certain populations (such as hospital patients) and lacked representativeness at the 
geographic scale we required. The incorporation of questions about soap and water availability in DHS 
and MICS added much-needed information but there remains a large data gap to be filled if we are to 
become more certain in handwashing access estimates. 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for unsafe hygiene is defined as all individuals with access 
to handwashing facility after any contact with excreta, including children’s excreta. 

Relative risks 
A meta-analysis by Cairncross et al.1 provide relative risk values describing the relationship between lack 
of facility access and diarrheal diseases. A meta-analysis by Rabie and Curtis2 provided relative risk 
evidence for the relationship between lack of facility access and lower respiratory infection. 
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3.a.1 Smoking Prevalence SDG Capstone Appendix 
Flowchart 

 

We made significant changes to the methods used to estimate smoking attributable burden in GBD 
2017. In previous iterations of the GBD, we have used the Peto-Lopez (Smoking Impact Ratio) method to 
estimate burden attributable to cancers and chronic respiratory diseases. Although this method 
provides robust estimates of the burden of cancers and chronic respiratory diseases related to tobacco, 
it is not fully consistent with the GBD approach of estimating exposure independently of the outcomes 
affected by exposure. For cardiovascular diseases and all other smoking attributable health outcomes, 
we used five-year lagged daily smoking prevalence as the exposure. With a growing body of evidence on 
the association between smoking and several types of cancers and with cardiovascular disease, coupled 
with good estimates of the distribution of cumulative smoking exposure, direct estimation of 
attributable burden is possible. In GBD 2017, we have transitioned to using continuous measures of 
exposure that incorporate dose-response effects among daily, occasional, and former smokers for all 
health outcomes except fractures. 

Current and former smoking prevalence 
We estimated the prevalence of current smoking and the prevalence of former smoking using data from 
cross-sectional nationally representative household surveys. We defined current smokers as individuals 
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who currently use any smoked tobacco product on a daily or occasional basis. We defined former 
smokers as individuals who quit using all smoked tobacco products for at least 6 months, where 
possible, or according to the definition used by the survey. Prior to modelling a complete time series for 
all demographic groups, we made adjustments for alternative case definitions as well as for data 
reported in non-standard age or sex groups. We modelled current and former prevalence using 
spatiotemporal Gaussian process regression.  

Data extraction 
We extracted primary data from individual-level microdata and survey report tabulations. We extracted 
data on current, former, and/or ever smoked tobacco use reported as any combination of frequency of 
use (daily, occasional, and unspecified, which includes both daily and occasional smokers) and type of 
smoked tobacco used (all smoked tobacco, cigarettes, hookah, and other smoked tobacco products such 
as cigars or pipes), resulting in 36 possible combinations. Other variants of tobacco products, for 
example hand-rolled cigarettes, were grouped into the four type categories listed above based on 
product similarities. Only smoked tobacco products are included, smoked drugs are estimated 
separately as part of the drug use risk factor. 
 
For microdata, we extracted relevant demographic information, including age, sex, location, and year, as 
well as survey metadata, including survey weights, primary sampling units, and strata. This information 
allowed us to tabulate individual-level data in the standard GBD five-year age-sex groups and produce 
accurate estimates of uncertainty. For survey report tabulations, we extracted data at the most granular 
age-sex group provided. 

Crosswalk 
Our GBD smoking case definitions were current smoking of any tobacco product and former smoking of 
any tobacco product. All other data points were adjusted to be consistent with either of these 
definitions. Some sources contained information on more than one case definition and these sources 
were used to develop the adjustment coefficient to transform alternative case definitions to the GBD 
case definition. The adjustment coefficient was the beta value derived from a linear model with one 
predictor and no intercept. 
 
We generated separate crosswalk coefficients for the 10-14 age group and the 15-19 age group, as we 
found the relationships between case definitions differed strongly in the younger age groups compared 
to the 20+ age groups. To account for this, we attempted to generate a global crosswalk coefficient for 
both the 10-14 and 15-19 age groups, using the same regression as above. Due to data limitations, none 
of the crosswalk coefficients met the criteria outlined above, so no data covering youths under 20 years 
old were crosswalked. In other words, all data from these age groups that appear in the model were 
asked according to our case definition in the survey. 
 
We propagated uncertainty at the survey level from the crosswalk by incorporating both the variance of 
the errors and the variance of the adjustment coefficients.  
 
For each source that needed adjusting, we assigned space weights based on GBD region and super 
region to the sources containing more than one case definition. Data from the same region receiving a 
full weight of 1, and data from the same super-region received a weight of ½. We explored using a time 
weight, to control for possible changes in the relationship between smokeless tobacco use behaviours 
over time. We found incorporating temporal information did not significantly change the estimated 
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coefficients but did undercut sample sizes, and chose to exclude the time weight. Crosswalk coefficients 
generated from fewer than 20 data sources were dropped 
 
Age and Sex Splitting  
We split data reported in broader age groups than the GBD 5-year age groups or as both sexes 
combined by adapting the method reported in Ng et al. 
(http://jamanetwork.com/journals/jama/fullarticle/1812960) to split using a sex- geography- time 
specific reference age pattern. We separated the data into two sets: a training dataset, with data 
already falling into GBD sex-specific 5-year age groups, and a split dataset, which reported data in 
aggregated age or sex groups. We then used spatiotemporal Gaussian Process Regression (ST-GPR) to 
estimate sex-geography-time specific age patterns using data in the training dataset. The estimated age 
patterns were used to split each source in the split dataset.  
 
The ST-GPR model used to estimate the age patterns for age-sex splitting used an age weight parameter 
value that minimises the effect of any age smoothing. This parameter choice allows the estimated age 
pattern to be driven by data, rather than being enforced by any smoothing parameters of the model. 
Because these age-sex split data points will be incorporated in the final ST-GPR exposure model, we do 
not want to doubly enforce a modelled age pattern for a given sex-location-year on a given aggregate 
data point.  
 
Smoking Prevalence Modelling 
We used ST-GPR to model current and former smoking prevalence. Full details on the ST-GPR method 
are reported elsewhere in the Appendices of the GBD Capstones. Briefly, the mean function input to 
GPR is a complete time series of estimates generated from a mixed effects hierarchical linear model plus 
weighted residuals smoothed across time, space and age. The linear model formula for current smoking, 
fit separately by sex using restricted maximum likelihood in R, is: 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡� = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔,𝑡𝑡 + �𝛽𝛽𝑘𝑘𝐼𝐼𝐴𝐴[𝑎𝑎] + 𝛼𝛼𝑠𝑠 + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑔𝑔 + 𝜖𝜖𝑔𝑔,𝑎𝑎,𝑡𝑡

19

𝑘𝑘=2

  

Where 𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔,𝑡𝑡 is the tobacco consumption covariate by geography 𝑔𝑔 and time 𝑡𝑡, described above, 𝐼𝐼𝐴𝐴[𝑎𝑎] is 
a dummy variable indicating specific age group 𝐴𝐴 that the prevalence point 𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡 captures, and 
𝛼𝛼𝑠𝑠,𝛼𝛼𝑟𝑟 , and 𝛼𝛼𝑔𝑔 are super region, region, and geography random intercepts, respectively. Random effects 
were used in model fitting but not in prediction.  

The linear model formula for former smoking is:   

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡� = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 + �𝛽𝛽𝑘𝑘𝐼𝐼𝐴𝐴[𝑎𝑎] + 𝛼𝛼𝑠𝑠 + 𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑔𝑔 + 𝜖𝜖𝑔𝑔,𝑎𝑎,𝑡𝑡
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Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 is the percent change in current smoking prevalence from the previous year, 
and 𝐶𝐶𝐶𝐶𝑃𝑃𝐴𝐴[𝑎𝑎],𝑔𝑔,𝑡𝑡 is the current smoking prevalence by specific age group 𝐴𝐴, geography 𝑔𝑔, and time 𝑡𝑡 that 
point 𝑝𝑝𝑔𝑔,𝑎𝑎,𝑡𝑡 captures, both derived from the current smoking ST-GPR model defined above.  
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Exposure Among Current and Former Smokers 
We estimated exposure among current smokers for two continuous indicators: cigarettes per smoker 
per day and pack-years. Pack-years incorporates aspects of both duration and amount. One pack-year 
represents the equivalent of smoking one pack of cigarettes (assuming a 20 cigarette pack) per day for 
one year. Since the pack-years indicator collapses duration and intensity into a single dimension, one 
pack-year of exposure can reflect smoking 40 cigarettes per day for six months or smoking 10 cigarettes 
per day for two years. 

To produce these indicators, we simulated individual smoking histories based on distributions of age of 
initiation and amount smoked. We informed the simulation with cross-sectional survey data capturing 
these indicators, modelled at the mean level for all locations, years, ages, and sexes using 
spatiotemporal Gaussian process regression. We rescaled estimates of cigarettes per smoker per day to 
an envelope of cigarette consumption based on supply-side data. We estimated pack-years of exposure 
by summing samples from age- and time-specific distributions of cigarettes per smoker for a birth cohort 
in order to capture both age trends and time trends and avoid the common assumption that the amount 
someone currently smokes is the amount they have smoked since they began smoking. All distributions 
were age-, sex-, and region- specific ensemble distributions, which were found to outperform any single 
distribution.  

We estimated exposure among former smokers using years since cessation. We utilised spatiotemporal 
Gaussian process regression to model mean age of cessation using cross-sectional survey data capturing 
age of cessation. Using these estimates, we generated ensemble distributions of years since cessation 
for every location, year, age group, and sex. 

Risk-Outcome Pairs 
We included the following risk-outcome pairs based on evidence supporting a causal relationship: 
tuberculosis, lower respiratory tract infections, esophageal cancer, stomach cancer, bladder cancer, liver 
cancer, laryngeal cancer, lung cancer, breast cancer, cervical cancer, colorectal cancer, lip and oral 
cancer, nasopharyngeal cancer, other pharyngeal cancer, pancreatic cancer, kidney cancer, leukemia, 
ischemic heart disease, ischemic stroke, hemorrhagic stroke, subarachnoid hemorrhage, atrial 
fibrillation and flutter, aortic aneurysm, peripheral arterial disease, chronic obstructive pulmonary 
disease, other chronic respiratory diseases, asthma, peptic ulcer disease, gallbladder and biliary tract 
diseases, Alzheimer disease and other dementias, Parkinson disease (protective), multiple sclerosis, 
type-II diabetes, rheumatoid arthritis, low back pain, cataracts, macular degeneration, and fracture. 

Dose-response risk curves 
We conducted systematic literature reviews for all risk-outcome pairs identified as being caused by 
smoking. We extracted effect sizes by cigarettes per smoker per day, pack-years, and years since 
quitting from cohort and case-control studies. We synthesised these data to produce non-linear dose 
response curves using a Bayesian meta-regression model. For outcomes with significant differences in 
effect size by sex or age, we produced sex- or age-specific risk curves. 
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We estimate risk curves of former smokers compared to never smokers taking into account the rate of 
risk reduction among former smokers seen in the cohort and case-control studies, and the cumulative 
exposure among former smokers within each age, sex, location and year group.  

PAF Calculation 
We estimated population attributable fractions based on the following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑝𝑝(𝑛𝑛) + 𝑝𝑝(𝑓𝑓)∫ exp(𝑥𝑥) ∗ 𝑟𝑟𝑟𝑟(𝑥𝑥) + 𝑝𝑝(𝑐𝑐)∫ exp(𝑦𝑦) ∗ 𝑟𝑟𝑟𝑟(𝑦𝑦) − 1
𝑝𝑝(𝑛𝑛) + 𝑝𝑝(𝑓𝑓)∫ exp(𝑥𝑥) ∗ 𝑟𝑟𝑟𝑟(𝑥𝑥) + 𝑝𝑝(𝑐𝑐)∫ exp(𝑦𝑦) ∗ 𝑟𝑟𝑟𝑟(𝑦𝑦)  

where 𝑝𝑝(𝑛𝑛) is the prevalence of never smokers, 𝑝𝑝(𝑓𝑓) is the prevalence of former smokers, 𝑝𝑝(𝑐𝑐) is the 
prevalence of current smokers, exp(𝑥𝑥) is a distribution of years since quitting among former smokers, 
𝑟𝑟𝑟𝑟(𝑥𝑥) is the relative risk for years since quitting, exp(𝑦𝑦) is a distribution of cigarettes per smoker per 
day or pack-years, and 𝑟𝑟𝑟𝑟(𝑦𝑦) is the relative risk for cigarettes per smoker per day or pack-years. 

We used pack-years as the exposure definition for cancers and chronic respiratory diseases, and 
cigarettes per smoker per day for cardiovascular diseases and all other health outcomes. 
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3.b.1 Vaccine Coverage SDG Capstone Appendix 
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Calculate geometric 
mean of draws using 

national schedule for a 
given country-year

 

Input data & methodological summary 

Indicator definition 

This modeling strategy pertains to the vaccine coverage measure (Indicator 3.b.1), the proportion of the 
target population covered by all vaccines included in the national program, including diphtheria-tetanus-
pertussis (DTP, three doses), both doses of measles vaccine (one dose and two doses), polio (three 
doses), hepatitis B (three doses), Haemophilus influenzae type b (Hib, three doses), pneumococcal 
conjugate vaccine (PCV, three doses), and rotavirus vaccine (two or three doses). We use the arithmetic 
mean of coverage of these eight vaccines, irrespective of their inclusion in the national vaccine schedule, 
to compute overall vaccine coverage of target populations. 

Indicator 3.b.1 

As a component of Goal 3: Ensure healthy lives and promote well-being for all at all ages, Target 3.b: 
Support the research and development of vaccines and medicines for the communicable and non-
communicable diseases that primarily affect developing countries, provide access to affordable essential 
medicines and vaccines, in accordance with the Doha Declaration on the TRIPS Agreement and Public 
Health, which affirms the right of developing countries to use to the full the provisions in the Agreement 
on Trade-Related Aspects of Intellectual Property Rights regarding flexibilities to protect public health, 
and, in particular, provide access to medicines for all., is measured using SGD Indicator 3.b.1: proportion 
of the target population covered by all vaccines included in their national programme. 
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Input data 

The present study used data from household-level surveys as well as administrative reports of 
immunization coverage. Survey data which provided person-level information on immunization were 
identified and extracted. Major multi-country survey programs included in the analysis include the 
Demographic and Health Surveys (DHS),1 Multiple Indicator Cluster Surveys (MICS),2 Reproductive Health 
Surveys (RHS),3 Living Standards Measurement Study (LSMS) surveys,4 and World Health Surveys (WHS).5 
We also conducted a comprehensive search of the Global Health Data Exchange (GHDx),6 as well as 
targeted internet searches and review of Ministry of Health websites, to identify national surveys and 
other multi-country survey programs. 

Administrative estimates of immunization coverage were obtained from the Joint Reporting Process 
(JRF),7 through which the World Health Organization (WHO) and UNICEF collate annual estimates of 
immunization coverage reported by UN member states. These immunization coverage estimates are 
separate from those synthesized by WHO, and are calculated by dividing the number of doses of a given 
vaccine delivered to the target population (i.e., children aged 12 to 23) by the number of individuals in 
that target population.  

We excluded all data sources that were not nationally representative or had high levels of missingness. 
We applied survey weights based on survey sampling frames whenever they were available to generate 
weighted national estimates of vaccination coverage accompanied by estimates of standard error (SE). 
Estimates of SE, as well as sample sizes, were used to calculate uncertainty, as described below. Any point 
estimates with sample sizes less than 50 were reviewed to ensure that were not substantive outliers and 
would otherwise have an undue influence on our analysis.  

Modeling strategy 

Data processing 

Age splitting 

Most household surveys collect information on maternal and child health (MCH) indicators for children 
under 5 and/or mothers who gave birth within five years prior to the time of survey. To maximize data 
use for our model, we included immunization data for children aged 12 to 59 at the time of survey. 
Children younger than 12 months of age were excluded to minimize the influence of potentially censored 
observations. For each vaccine, coverage estimates were assigned to birth-cohort years based on a child’s 
age prior to the time of survey: we used responses recorded for children aged 12 to 23 months for 
immunization coverage for one year prior to the time of survey, children aged 24 to 35 months for 
coverage two years prior to the time of survey, and so forth. 

Age-specific estimates are easily computed from individual-level microdata, but many published reports 
and survey summaries present data in broader age aggregates (e.g., DPT3 coverage for children aged 12 
to 35 months). To standardize these age groups, we applied an age-splitting model used in the GBD 
study,8 as well as analyses that generated smoking and obesity prevalence by age group.9,10  

Using surveys with microdata as the reference, we used the following model to generate standardized 
age group-specific estimates of immunization coverage:  
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𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 = 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑘𝑘 
𝑎𝑎+𝑥𝑥 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗

𝑃𝑃𝑎𝑎,𝑐𝑐,𝑡𝑡,𝑗𝑗
𝑎𝑎+𝑥𝑥   

where 𝑃𝑃�𝑎𝑎,𝑐𝑐,𝑘𝑘 is the adjusted estimate of coverage for target age group 𝑎𝑎 in country 𝑐𝑐 and year 𝑡𝑡 of survey 
𝑘𝑘; and 𝑃𝑃𝑎𝑎,𝑐𝑐,𝑘𝑘 

𝑎𝑎+𝑥𝑥  is coverage reported from survey 𝑘𝑘, for country 𝑐𝑐 in year 𝑡𝑡 for the age group spanning age 𝑎𝑎 
to age (𝑎𝑎 + 𝑥𝑥). The ratio of coverage between the target age group and broader age group from a survey 
𝑗𝑗 with microdata from the same country-year was used to split data from survey 𝑘𝑘. Surveys to be split 
were ideally matched with DHS or MICS surveys. If microdata were not available for the same year, ratios 
within five years of the survey that required age-splitting were applied.  

Administrative bias adjustment 

Intervention coverage estimates based on administrative sources can be biased. Such biases may arise for 
a number of reasons, including discrepancies in the accurate reporting of services or interventions provided 
(e.g., number of vaccine doses administered) and target population (e.g., number of children in need of 
vaccines), as well as capturing these data in a timely manner from both public and private-sector facilities 
and health care providers. We implemented a vaccine-specific bias adjustment process to account for bias 
in administrative reports of immunization coverage in the JRF.  Given that the magnitude, direction, and 
cause of such biases are heterogeneous across space, time, and antigen,11,12 a vaccine-specific, time-
varying, all-location bias correction factor was used.  

For immunization coverage, we view individual-level data collected through population health surveys as 
the most accurate and least biased source of information of vaccination coverage, particularly for 
geographies with incomplete health information systems. We thus compute administrative bias as the ratio 
between estimates of coverage from surveys (where available) and matched administrative coverage. We 
model this bias in a spatiotemporal Gaussian process regression (ST-GPR) framework, described further in 
the other appendices of the GBD Capstones, using the Socio-demographic index (SDI) as a predictor. This 
method allows us to estimate antigen-specific administrative bias factors for all geographies and years since 
1980, even in places without survey data, by borrowing strength in data across space and time. The GPR 
framework properly estimates prediction errors in the data synthesis procedure by for uncertainty in bias 
ratios when generating fitted values. In this framework, more weight is given to survey data with less 
uncertainty.  

Antigen-specific modeled estimates of administrative bias are then used to adjust administrative 
coverage data for over- or under-reporting to reflect observed survey coverage. Adjusted administrative 
data are used as inputs into the trend estimation process. 

Trend estimation  

We used a spatiotemporal Gaussian process regression (ST-GPR) to synthesize point estimates from 
multiple data sources and derive a complete time series for each vaccine. This method has been used 
extensively GBD and related studies, and accounts for uncertainty pertaining to each point estimate while 
borrowing strength across geographic space and time.10, 11,15,16 Briefly, we assumed the Gaussian process 
was defined by a mean function m(•) and covariance function Cov(•).  

We estimated the mean function using a two-step approach. Specifically, 𝑚𝑚𝑐𝑐(𝑡𝑡) can be expressed as: 

𝑚𝑚𝑐𝑐(𝑡𝑡) = 𝑋𝑋𝑋𝑋 + ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) 
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where 𝑋𝑋𝑋𝑋 is a linear model and ℎ(𝑟𝑟𝑐𝑐,𝑡𝑡) is a smoothing function for the residuals; and 𝑟𝑟𝑐𝑐,𝑡𝑡 is derived from 
the linear model. The following linear model was used to model DPT3, measles, BCG, polio coverage:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑐𝑐,𝑡𝑡� = 𝛽𝛽0 +  𝛽𝛽1HAQc,t +  𝛼𝛼𝑐𝑐 +  𝛾𝛾𝑅𝑅[𝑐𝑐] +  ωSR[c] +  𝜀𝜀𝑐𝑐,𝑡𝑡 
 
where 𝑃𝑃𝑐𝑐,𝑡𝑡 is vaccination coverage for country 𝑐𝑐 year 𝑡𝑡; 𝐻𝐻𝐻𝐻𝑄𝑄𝑐𝑐,𝑡𝑡 is value of the Healthcare Access and 
Quality Index15 for country 𝑐𝑐 and year 𝑡𝑡;  𝛼𝛼𝑐𝑐, 𝛾𝛾𝑅𝑅[𝑐𝑐], and ωSR[c] are country, region, and super-region 
random intercepts, respectively. These estimates were then modeled through ST-GPR.  

Given their recent introduction, there is limited coverage data for HepB, Hib, PCV, and rotavirus vaccines. 
To leverage the relatively data-rich DPT3 estimates, we modeled the ramp-up of each vaccine by 
modeling their ratio with DPT3 coverage. We first calculated the ratio of each particular vaccine with 
DPT3 by survey-year. We then modeled the full time series of the ratio using ST-GPR and ultimately 
obtained estimates of coverage by multiplying the modeled ratio by the final estimated DPT3 coverage by 
location-year. The following linear model was used as the mean function for the HepB, Hib, PCV, and Rota 
ratio with DPT3: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃𝑐𝑐,𝑖𝑖� = 𝛽𝛽0 +  𝛽𝛽1HAQc,i +  𝛼𝛼𝑐𝑐 +  𝛾𝛾𝑅𝑅[𝑐𝑐] +  ωSR[c] +  𝜀𝜀𝑐𝑐,𝑖𝑖  
 
where 𝑃𝑃𝑐𝑐,𝑖𝑖 is the coverage ratio for country 𝑐𝑐 time since introduction 𝑖𝑖; 𝐻𝐻𝐻𝐻𝑄𝑄𝑐𝑐,𝑖𝑖 is value of the Healthcare 
Access and Quality Index15 for country 𝑐𝑐 and time since introduction 𝑖𝑖;  𝛼𝛼𝑐𝑐, 𝛾𝛾𝑅𝑅[𝑐𝑐], and ωSR[c] are country, 
region, and super-region random intercepts, respectively.  

Random draws of 1,000 samples were obtained from the distributions above for every country for a given 
vaccine. Ninety-five percent uncertainty intervals were calculated by taking the ordinal 25th and 975th 
draws from the sample distribution.  

To assess the accuracy of our modeled estimates, we performed cross-validation analyses using a 
knockout structure as previously described16. ST-GPR hyperparameters were selected on models that 
minimized the overall root-mean squared error (RMSE) of the model across a set of 10 knockouts. 

Introduction schedule 

National vaccine schedules and vaccine introduction dates were used as reported from WHO17 or from 
the country’s Ministry of Health website where otherwise unavailable. These data were used to bound 
estimates of coverage (i.e. x=0 or 0<x<1) based on introduction status. Dates of policy changes for the 
BCG vaccine were used as reported by the BCG Atlas18 or directly form the country’s ministry of health 
website. 

Full coverage indicator 

To synthesize the full vaccination coverage indicator (SDG indicator 3.b.1), we calculated the arithmetic 
mean of the eight vaccines irrespective of their inclusion in the national vaccine schedule for a given year. 
In other words, newer-generation vaccinations such as PCV, second-dose measles, and Rota are included 
in each country-year’s calculation as zero percent coverage if the vaccine has not yet been introduced 
into the national schedule. This means that countries can only achieve “full” (i.e. 100%) vaccine coverage 
only after all eight vaccines have been introduced and scaled up to cover all 12- to 23-month olds in a 
given year.  
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Because of strange trends in coverage of vaccines that are removed from the national schedule (e.g. BCG 
in several European countries, Australia, and New Zealand), we did not include BCG in the full coverage 
indicator for this round of the GBD.  
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3.c.1 Health Worker Density and Distribution SDG Capstone Appendix 
 

Flowchart 

 
 

Input Data & Methodological Summary 
Indicator definition 
This modeling strategy encompasses the indicator associated with health worker densities (3.c.1) 

Indicator 3.c.1 

As a component of SDG Goal 3, SDG Target 3.c is measured using SDG Indicator 3.c.11: 

SDG Goal 3: Ensure healthy lives and promote well-being for all at all ages 

SDG Target 3.c: Substantially increase health financing and the recruitment, development, 
training, and retention of the health workforce in developing countries, especially in least 
developed countries and small island developing States 

SDG Indicator 3.c.1: Health worker density and distribution (health worker prevalence per 10,000 
population, by sex and cadre) 

For the purposes of this paper, we constructed indicator 3.c.1 from the densities of physicians, 
pharmacists, and nurses and midwives. The choice of these cadres and of their corresponding thresholds 
is discussed in detail below. 
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Input data 
The main data used in this study come from surveys that sampled general working-age populations (ages 
15-69) and asked employed respondents about their current main occupation. Such sources included 
general household surveys, labor force surveys, and censuses. The main indicators extracted from these 
surveys were employment ratios and the proportion of the employed population ages 15-69 involved in 
various occupations. Tabulated estimates of employment ratios from these types of sources were 
acquired from the ILO (International Labour Organization) and used as an envelope in the final estimation 
of health worker densities. Unfortunately, the vast majority of surveys that inquire about occupations do 
not code responses to the level of detail required to identify health workers, let alone specific cadres of 
health workers. In addition, those surveys that do code occupations to the necessary granularity rarely 
release tabulations of their data at such a detailed level. As a result, data on occupations came exclusively 
from individual-level microdata that could be obtained from such high-granularity surveys. 

There was substantial variability in the occupational coding systems used in the identified surveys. The 
most common coding systems adhered to the International Standard Classification of Occupations (ISCO), 
which has established standard codes ranging from 1 to 4 digits in length arranged in a hierarchy of 
granularity (see figure below for examples). Many surveys used other country-specific coding systems, 
but sometimes those systems were closely based on ISCO such that relevant occupations could be 
translated to ISCO codes with little information loss. However, when country-specific codes deviated 
substantially from ISCO, relevant occupations were only mapped to a standard code when documented 
descriptions sufficiently matched ISCO categorizations. 

Since its original adoption in 1957, ISCO has transitioned through three main versions: ISCO 68, ISCO 88, 
and ISCO 08. The ISCO 68 system was adopted in 1968 and distinguished occupations by trade, but this 
version was already phased out for the majority of the time period of interest for this study. ISCO 88 was 
adopted in 1988 and reframed the coding system to emphasize differences in occupational skill level and 
specialization. ISCO 08 was adopted in 2008 and updated the ISCO 88 system with additional distinctions 
relevant to the modern labour market. This update created more detailed distinctions between types of 
health workers and also consolidated them hierarchically, such that a few general health worker 
categories could be accurately identified using less granular codes2.  

An example subsection of the ISCO 88 hierarchy: 
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An example subsection of the ISCO 08 hierarchy (only relevant occupations shown): 

 
 

The diagrams above depict ISCO 88 and 08 coding systems at different levels of granularity. The top level 
is a 1-digit code, which refers to a very large number of occupations (in this case, all professionals). With 
increased digits (added to the right-hand side of the code at each subsequent level) it becomes possible 
to differentiate more specialized occupations from one another.  

Although ISCO 08 facilitates the identification of health workers with greater ease and detail, surveys 
have been slow to transition to the newer coding system. Consequently, ISCO 88 makes up the majority 
of ISCO coded surveys in every year in the study until 2013. Due to the relative paucity of ISCO 08 across 
the time period of interest and the information loss inherent in mapping from one coding system to 
another, defining the health worker cadres according to ISCO 08 codes seemed untenable. As a result, we 
set ISCO 88 as the gold standard coding system for the purposes of this study. This meant that the 
granularity of health worker cadres estimated in this analysis was constrained to the level of detail 
provided by ISCO 88 4-digit codes (the most-detailed level in the system). In future analyses—when ISCO 
08 surveys cover a greater proportion of the time period of interest—it should be possible to use ISCO 08 
as the gold standard coding system, thus increasing the granularity of cadre-specific estimates. 

To compile a list of relevant health worker cadres from ISCO codes, we used the WHO Handbook on 
Monitoring and Evaluation of Human Resources for Health3. 
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Most-granular health worker cadres under ISCO 88 coding system: 

* Included in SDG indicator 3.c.1 in this analysis 
 

Data mapping and splitting 
When possible, occupation codes were mapped directly to the corresponding health worker cadres. For 
less granular surveys, codes had to be split in order to provide cadre-specific estimates.  

Among ISCO coded sources, only 3 and 4-digit surveys were used, as it was not feasible to split less 
granular codes accurately to the cadre-specific level. All 4-digit (and some 3-digit) ISCO codes could be 
directly mapped to health worker cadres using ISCO concordance documentation to convert ISCO 08 
codes to ISCO 88. Not all codes had exact matches between versions; in such cases the closest 
approximate concordance was used. 

  

Health Worker Cadre 4-Digit ISCO 88 Code 

Physicians* 2221 

Nursing & Midwifery Professionals* 2230 

Nursing Associate Professionals* 3231 

Midwifery Associate Professionals* 3232 

Pharmacists* 2224 

Pharmaceutical Assistants 3228 

Dentists 2222 

Dental Assistants 3225 

Physiotherapists & Related Professionals 3226 

Medical Equipment Operators 3133 

Medical & Life Sciences Laboratory Technicians 3211 

Community Health Workers, Clinical Officers, & Medical Assistants 3221 

Paramedics, Emergency Medical Technicians, & Healthcare Aides 5132 & 5139 

Environmental Health Officers 3222 

Optometrists & Opticians 3224 

Dieticians & Nutritionists 3223 

Audiologists, Speech Therapists, & HIV/Family Planning Counsellors 3229 

Psychologists 2445 

Home-Based Personal Care Workers 5133 

Traditional Medicine Practitioners 3241 
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Examples of health worker cadre mapping: 

 

In the table above, occupations and their corresponding codes come from ISCO’s concordance 
documentation2. In this example, there is an exact match between codes for dentists in both coding 
versions (though one codes them as 2261 and the other as 2222). As a result, both codes can be mapped 
to the same cadre without any information loss. While ISCO 08 separates community health workers, 
clinical officers, and medical assistants into distinct codes, all three combined form one 4-digit code in 
ISCO 88. Since the health worker cadres for this analysis are defined by the ISCO 88 hierarchy, the three 
distinct ISCO 08 codes are all mapped to the same cadre, resulting in a loss of granularity but not a loss of 
comparability between versions. In the case of environmental health officers, ISCO 08 and 88 codes 
cannot be aggregated in a way that creates an exact match between versions without incorporating many 
unrelated occupations as well. In ISCO 88, environmental health officers and food inspectors are grouped 
together, and are both mapped to the environmental health officer cadre. In ISCO 08, environmental 
health officers and occupational hygienists are grouped together and are also mapped to the 
environmental health officer cadre. It would not be appropriate to include occupational hygienists from 
an ISCO 88 survey in the cadre, nor would it be appropriate to include food inspectors from an ISCO 08 
survey, because in both systems these occupations are grouped together with many non-health related 
positions (such as electrical product inspectors and quality controllers). As a result, those codes and 
occupations are not mapped to any cadre and are not included in subsequent analyses. This mapping 
strategy inherently results in some inconsistencies and information loss, but in these cases codes were 
chosen from ISCO concordance documents so as to minimize inconsistencies to the greatest extent 
possible. 

Most 3-digit ISCO codes were not granular enough to be mapped to particular cadres, but still provided 
information as an envelope within which certain cadres could be found. Since 3-digit ISCO coded surveys 
were very common (particularly among identified censuses), relevant 3-digit codes were split out into 
their underlying cadres and retained in the analysis. In order to perform such splits, we ran preliminary 

Occupation Titles ISCO 08 
Code 

ISCO 88 
Code 

ISCO 88-Defined  
Health Worker Cadre 

Dentists 2261 2222 Dentists 

Community Health Workers 3253 3221 CHWs, Clinical Officers, & Medical Assistants 

Clinical Officers 2240 3221 CHWs, Clinical Officers, & Medical Assistants 

Medical Assistants 3256 3221 CHWs, Clinical Officers, & Medical Assistants 

Environmental Health Officers 2263 3222 Environmental Health Officers 

Food Inspectors 3257 3222 No Cadre /  Environmental Health Officers 

Occupational Hygienists 2263 3152 Environmental Health Officers /  No Cadre 

Quality Controllers, Electrical 
Product Inspector, etc. 3257 3152 No Cadre 
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versions of our final model (more detail on the model below) for each health worker cadre using only 4-
digit survey data. We also ran models for the residual categories associated with each 3-digit code of 
interest. The data for such residual models encompassed all 4-digit codes underlying a 3-digit code of 
interest that were not associated with a health worker cadre. Each 3-digit code could then be split into 
cadre-specific data using the preliminary modeled estimates of the code’s underlying components for 
that GBD location and year. This method leveraged available 4-digit data to better inform 3-digit splits, 
and was therefore preferable to one global split that would have been insensitive to differences across 
space and time in the proportional makeup of each 3-digit code. However, since the splits were based 
entirely upon models using only 4-digit data, this meant that all cadre input data obtained from 3-digit 
surveys were dependent upon the quality and coverage of 4-digit surveys, and could change as more 4-
digit surveys were incorporated. 

Among non-ISCO country-specific coding systems, levels of granularity varied substantially for different 
cadres, and was not easy to predict based on a coding system’s digit length alone. For example, a 2-digit 
country-specific coding system might make distinctions between different types of physicians but use one 
code for all nurses and midwives. Country-specific codes that matched (or could be aggregated up to) a 
cadre defined by 4-digit ISCO 88 were mapped to those cadres. Other codes that could be directly split 
into multiple cadres (without any residual groups) were split using the same method applied to 3-digit 
ISCO codes. All other country-specific codes were excluded from the analysis. 

After mapping and splitting all usable surveys and censuses, input data representing proportions of the 
employed population ages 15-69 in each health worker cadre were ready to enter the final model. We 
also compiled a dataset of the sum of all cadres from those surveys whose coding systems allowed 
mapping to every cadre included in the analysis (primarily ISCO 88 and 08 surveys). 

 

Modeling Strategy 
All models for this analysis used Spatiotemporal Gaussian process regression (ST-GPR), a three-stage 
model used widely within the GBD study to synthesize coherent trends and uncertainty from multiple 
sources of data. The first stage of ST-GPR entails fitting a linear model on the data. The second stage 
involves smoothing over space-time based on the residuals from the first stage linear model. The third 
stage uses Gaussian Process Regression (GPR) to generate a cohesive time series of an indicator and 
uncertainty for all GBD locations from 1990 to 2017. Models were run for each health worker cadre 
individually, for all health workers together, and for employment ratios. 

For health worker cadres and all health workers together, the linear model had fixed effects on Socio-
Demographic Index, total national per-capita health expenditure (log-transformed), and professional 
workforce (the proportion of the employed population working in professional occupations according to 
ISCO). The Socio-Demographic Index and estimates of total per-capita health expenditure are outputs of 
other projects within GBD and the Institute for Health Metrics and Evaluation. Estimates of the 
professional workforce come from the same types of surveys for which health worker cadre data is 
derived, but because professional occupations can be identified from surveys with only 1 digit of 
occupation code granularity, many more surveys were available to inform estimates for this covariate. In 
order to generate a complete time-series for the professional workforce in all GBD locations, it was also 
modeled in ST-GPR (more details on the professional occupation modeling process can be found in the 
appendix for Occupational Risk Factors, since that is the primary purpose for the indicator). For health 
worker cadres, identical model settings were used for the intermediate estimates (used in the splitting 
process and run on only 4-digit surveys) and the final estimates (run on all available data). 
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Unlike the health cadres, employment ratios were modeled by age and sex, with fixed effects on the 
Socio-Demographic Index, urbanicity, and age group, and random effects on location, region, and super-
region. Final results were then aggregated using GBD populations to produce an estimate of the 
employed population ages 15-69 as a proportion of the total population for every location and year. 

Because specific health worker cadres make up such a small proportion of the employed population, logit 
transformations were very unstable for modeling specific cadres. As a result, health worker cadre 
proportion data was multiplied by 10,000 to represent the number of cadre workers per 10,000 
employed population. The data was then modeled in log space, and model results were converted back 
to proportions. Because all health workers together constituted larger proportions than individual cadres, 
this indicator did not require such additional transformations and was modeled directly as a proportion in 
logit space. To further control for unrealistic trends and extrapolations due to stochastic variation in 
smaller health cadre proportion data, the total estimate of all health workers together was used as an 
envelope to which all cadre-specific results were squeezed. In the final step, squeezed estimates of health 
worker cadres as a proportion of the employed population ages 15-69 were converted to proportions of 
the total population using the output from the employment ratio model. 

 

Indicator Construction 
The WHO established a health workforce threshold of 23 physicians, nurses, or midwives per 10,000 
population based on the 2006 World Health Report comparison of health worker density and 
achievement of skilled birth attendance above 80%4. This threshold has been widely referenced in global 
health literature and was extrapolated to represent the threshold necessary for implementing the 
primary health care interventions enumerated in the Millennium Development Goals. However, evidence 
for the threshold’s utility is rather limited, since it is the product of a single analysis looking at only one 
measure of healthcare performance, whereas workforce requirements are likely to differ substantially 
across a variety of services. For this analysis, we aimed to establish new evidence-based thresholds that 
leveraged workforce associations with a more holistic measure of healthcare performance, the GBD’s 
Healthcare Access and Quality (HAQ) Index. 

Following exploratory analyses of health worker cadre associations with HAQ, and after consulting the 
SDG indicator metadata guidelines, we settled on physicians, pharmacists, and nurses and midwives as 
components for the SDG indicator used in this analysis. Although dentistry personnel are also mentioned 
in the SDG indicator metadata, and many other healthcare workers are known to contribute to healthcare 
access and quality, initial analyses relating additional cadres to the HAQ Index proved challenging, and 
more research is needed before such cadres can be added to the indicator. 

Although ISCO 88 codes allowed the disaggregation of nurses and midwives into nursing and midwifery 
professionals, nursing associate professionals, and midwifery associate professionals, close inspection of 
survey data showed that countries and survey series did not exhibit much consistency in their coding of 
nurses and midwives. Within a particular country and survey series, the aggregate nurses and midwives 
category tended not to differ much from year to year, whereas the individual cadre subcomponents could 
differ substantially from one survey to the next. This suggested that the trends in specific cadres of nurses 
and midwives were not as informative or reliable as the overall trend, so for the purpose of constructing a 
health workforce indicator the aggregate of all nurses and midwives were treated as one cadre. 

Rather than creating an indicator from the simple sum of physicians, pharmacists, and nurses and 
midwives all together—which masks important distinctions in the cadre composition of a health 
workforce—we aimed to establish an indicator that distinguishes the importance of individual cadres. 
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Consequently, each cadre in the analysis was assigned its own minimum threshold value for use in 
constructing a scaled index (where countries that reached or surpassed the threshold value were all 
assigned the same maximum value). Establishing such thresholds allowed the scaled workforce indicator 
to reflect the adequacy of workforce densities on the basis of their association with healthcare access and 
quality as opposed to just their relative values compared to other countries, many of which may have 
workforce densities much higher than what is required for good care. However, it was also important to 
keep observations of cadre workforce densities paired with one another, as a location that is low on one 
cadre may be able to compensate with higher densities of a different cadre, yielding higher healthcare 
performance than other locations where workforce densities are low across many cadres. 

To establish cadre-specific thresholds, we ran a logistic regression on GBD estimates of HAQ with fixed 
effects on physicians, pharmacists, and nurses and midwives, as well as random effects on intercept by 
location. We then used the regression outputs to predict HAQ Index values for every location and year, 
replacing all location-specific random effects with the fifth percentile of observed random effects across 
all locations. We then scattered predicted HAQ values against each cadre individually and identified the 
health worker density at which further increases in workforce began yielding diminishing returns in the 
predicted HAQ Index. The lowest observed cadre workforce density at which a country’s returns in 
predicted HAQ began diminishing was used as the minimum threshold for the cadre. The threshold values 
established for each cadre in the construction of SDG indicator 3.c.1 were as follows: 30 physicians per 
10,000 population, 100 nurses and midwives per 10,000 population, and 5 pharmacists per 10,000 
population. 
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5.2.1, 5.2.2, 16.1.3, 16.2.3, Sexual and Physical Violence SDG Capstone  
 

Input data ProcessResultsDatabaseSDGs
Covariates

Input Data

Database Dismod-MR 2.1

Prevalence by 
location/year/

age/sex/
indicator

Study and 
location 

covariates

Literature data

Survey data

Crosswalk of 
lifetime non-

partner data to 12-
month exposure

 
Indicator definition 
This modeling strategy relates to all indicators associated with sexual and physical violence as specified 
below. 

Indicator 5.2.1 
Indicator 5.2.1 is part of Goal 5: achieve gender equality and empower all women and girls. Target 5.2 is 
to eliminate all forms of violence against all women and girls in public and private spheres, including 
trafficking and sexual and other types of exploitation. This indicator measures the proportion of ever-
partnered women and girls aged 15 years and older subjected to physical, sexual, or psychological 
violence by a current or former intimate partner in the previous 12 months, by form of violence and age. 
Because of the difficulty in measuring psychological violence in surveys, and limited data availability, we 
have excluded psychological violence from the measurement of this indicator. 

Indicator 5.2.2 
Indicator 5.2.2 is part of Goal 5: achieve gender equality and empower all women and girls. Target 5.2 is 
to eliminate all forms of violence against all women and girls in public and private spheres, including 
trafficking and sexual and other types of exploitation. This indicator measures the proportion of women 
and girls aged 15 years and older subjected to sexual violence by persons other than an intimate partner 
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in the previous 12 months, by age and place of occurrence. For this indicator, we do not distinguish the 
events by place of occurrence. 

Indicator 16.1.3 
Indicator 16.1.3 is part of Goal 16: promote peaceful and inclusive societies for sustainable development, 
provide access to justice for all and build effective, accountable and inclusive institutions at all levels. 
Target 16.1 is to significantly reduce all forms of violence and related death rates everywhere. This 
indicator measures the proportion of population subjected to physical, psychological, or sexual violence 
in the previous 12 months. Similarly to Indicator 5.2.1, we have excluded psychological violence from the 
measurement of this indicator due to data availability issues. New for GBD 2017, we are modeling 
physical violence and sexual violence separately as indicators 16.1.3.a and 16.1.3.c respectively.  

Indicator 16.2.3: 
Indicator 16.2.3 is part of Goal 16: promote peaceful and inclusive societies for sustainable development, 
provide access to justice for all and build effective, accountable and inclusive institutions at all levels. 
Target 16.2 is to end abuse, exploitations, trafficking and all forms of violence against and torture of 
children. This indicator measures the proportion of young women and men aged 18-29 years who 
experienced sexual violence by age 18. 

Input data 
The main sources of input data for Indicators 5.2.1, 5.2.2, and 16.1.3, and 16.2.3 come from the 
following: 

Demographic and Health Surveys (DHS) 
In the GHDx, we identified DHS that had variables related to sexual violence. The vast majority of the DHS 
only contain questions relating to indicators 5.2.1 and 16.1.3 (the Rwanda 2014-2015 DHS had additional 
questions relating to indicator 5.2.2, non-partner sexual violence). 

The European Union Violence against Women Study 
This violence against women study for the European Union provided data for many countries in the 
European Union. Questions related to sexual violence covered both intimate partner violence, and non-
partner sexual violence, contributing data to all three indicators. 

The United States Behavioral Risk Factor Surveillance System (BRFSS) 
The BRFSS study has U.S. state-level data on all three of the indicators. Not all states choose to expand 
their BRFSS survey to include sexual and physical violence questions, so the data included are only from a 
select number of states. The surveys included are from 2005, 2006, and 2007. 

China Health and Family Life Survey 
The China Health and Family Life Survey from 1999-2000 asks about lifetime prevalence of sexual assault; 
however, we were able to extract yearly prevalence for indicator 16.1.3.c by pairing a respondent’s 
current age with the reported age of when the sexual assault occurred. 

Figures 1 – 4 show the data density of unique source by location for each of the three indicator models. 

No data from police reports, Child Protection Services (CPS), or other crime data is used because the 
reliability and comprehensiveness of these data vary too much geographically to warrant inclusion. 
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Figure 1. Input data density of unique source by location for Indicator 5.2.1: prevalence of intimate 
partner sexual or physical violence in the last 12 months among women and girls.* 

 

*Country-level sources for China (1), England (1), India (1), Kenya (4), Mexico (2), South Africa (1), Sweden (2), and United States 
(4) are not included on the map 

Figure 2. Input data density of unique source by location for indicator 5.2.2: prevalence of non-partner 
sexual violence in the last 12 months among women and girls.* 
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*Country-level sources for China (1), England (1), India (1), Kenya (2), Mexico (1), Sweden (1), and United States (4) are not 
included on the map 

Figure 3. Input data density of unique source by location for indicator 16.1.3.a: prevalence of physical 
violence in the last 12 months (females).* 

 

*Country-level sources for China (1), England (1), India (1), Kenya (4), South Africa (1), Sweden (1), and United States (4) are not 
included on the map 

Figure 4. Input data density of unique source by location for indicator 16.1.3.a: prevalence of physical 
violence in the last 12 months (males).* 
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*Country-level sources for China (1), Kenya (2), Sweden (1), and United States (4) are not included on the map 

Figure 5. Input data density of unique source by location for indicator 16.1.3.c: prevalence of sexual 
violence in the last 12 months (females).* 

 

*Country-level sources for China (1), England (1), India (1), Kenya (4), South Africa (2), Sweden (2), and United States (2) are not 
included on the map 

Figure 6. Input data density of unique source by location for indicator 16.1.3.c: prevalence of sexual 
violence in the last 12 months (males).* 
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*Country-level sources for China (1), Kenya (1), South Africa (1), Sweden (1), and United States (2) are not included on the map 

Modelling Strategy 
Overall Modelling Strategy – Indicators 5.2.1, 5.2.2, 16.1.3.a, and 16.1.3.c: 
In order to model the prevalence of these four indicators with a 12-month recall, we used DisMod-MR 
2.1, a descriptive epidemiological meta-regression tool. For indicators 5.2.1, 5.2.2, and 16.1.3.a, we used 
a single-parameter modelling approach within DisMod-MR 2.1 to fit the data for prevalence only. To 
maintain consistency with the modelling of overall sexual violence in the Global Burden of Disease 
framework, a single-parameter model was not used for indicator 16.1.3.c and instead prevalence, 
incidence, and remission were estimated simultaneously. 

The three main data sources ask questions in different ways, so we have included study-level covariates in 
order to adjust these data sources to the reference measure of prevalence in the last 12-months. These 
covariates are described in Table 1 for each of the indicator models. We also present the exponentiated 
coefficient representing the magnitude of difference between the data points deviating from the 
reference from each of the indicator models (interpreted as a ratio: larger ratios indicate that the 
reference data points have lower estimates than those marked with the covariate, and smaller ratios 
indicate that the gold standard data points have higher estimates that those marked with the covariate). 
When appropriate, we pre-specified logical bounds for study-level covariates (i.e. studies only asking 
about penetrative sexual violence must have lower estimates than the reference studies that ask about 
both penetrative and non-penetrative sexual violence). 

To inform estimates in areas where we do not have data, we included country-level covariates in the 
indicator models. The exponentiated coefficients for these country-level covariates are also included in 
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Table 1. Where appropriate, we have also included the estimate of the sex covariate (where values < 1 
indicate that the indicator is more prevalent in females). 

Table 1. Study- and country-level covariates for DisMod-MR 2.1 yearly recall prevalence models for SDG 
indicators 5.2.1, 5.2.2, and 16.1.3. 

Covariate 

Indicator 5.2.1: 
intimate partner 
physical or sexual 
violence among 

women 

Indicator 5.2.2: 
non-partner sexual 

violence among 
women 

Indicator 16.1.3a: 
physical violence 

Indicator 16.1.3.c: 
sexual violence 

Study-level covariates     

Does not include sexual 
violence 0.68 (0.61 — 0.75)    

Does not include physical 
violence 

0.39 (0.27 — 0.61)    

Penetrative sexual violence 
only 

 0.66 (0.54 – 0.79)  0.79 (0.66 – 0.93) 

Ever-partnered people only 
(all people for Indicator 
5.2.1) 

0.88 (0.79 — 0.96)   1.70 (1.18 – 2.52) 

Only includes partner 
violence   0.99 (0.98 – 1.00) 0.85 (0.57 – 1.00) 

Physically forced sexual 
violence only 

   0.94 (0.82 – 1.00) 

Ever-married people only    2.65 (1.85 – 4.67) 

Specifies specifically 
degrading or humiliating sex 
acts 

   0.92 (0.75 – 1.00) 

Ever had sex    1.38 (1.16 – 1.64) 

Ever married or lived with a 
partner 

   2.03 (1.49 – 2.87) 

Does not include coerced or 
feared sex in definition 

   0.92 (0.80 – 1.00) 

Does not include non-
partner non-penetrative 

   0.99 (0.96 – 1.00) 

Includes attempted sexual 
violence 

   1.44 (1.02 – 2.17) 

Sex (male)   0.71 (0.67 – 0.75) 0.36 (0.30 – 0.41) 

Country-level covariates     

Socio-demographic Index 0.23 (0.19 — 0.28) 3.17 (1.70 — 6.11)   

Age-standardized, sex-
specific homicide rate 

1.13 (1.07 – 1.19)    

Alcohol (liters per capita)    1.11 (1.08 – 1.15) 
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Lifetime Experience of Non-Partner Sexual Violence 
As shown in Figure 2, the model for SDG indicator 5.2.2. Prevalence of non-partner sexual violence in the 
last 12 months among females is data-sparse for low and middle-income countries. Most of the DHS 
surveys, which is where the bulk of the sexual violence data for low and middle-income countries come 
from, do not ask questions about sexual violence committed explicitly by a non-partner in the last year. 
The result of this is clear in preliminary model results where all of the variation in the low and middle-
income countries is driven by the country-level covariates of socio-demographic index and the age-
standardized homicide rate in females. Although these covariates may have a relationship with non-
partner sexual violence, the regional gradients that they produced in the results for non-partner sexual 
violence were implausible. 

In order to better inform our estimates, we sought to use all of the non-partner sexual violence data 
available. Although many surveys do not ask about non-partner sexual violence in the last year, they often 
do have questions about non-partner sexual violence ever. Therefore, we have included these sources 
and performed an age-specific crosswalk of the lifetime recall data to adjust for bias. 

Overall Modelling Strategy – indicator 16.2.3: 
A single parameter proportion model in DisMod-MR was used to model sexual violence before age 18. 
Exposure is modeled separately for males and females because we observe little correlation between the 
prevalence of child abuse among females and males, and modeling both sexes together causes 
unreasonable estimates in countries where we only have data for one sex. Age mesh points for the 
female model were set at 0 20 30 40 60 & 100. 
 
Three study-level covariates were used for alternate definitions of the violence. 

• Study asked only about intercourse 
• Study asked about contact and non-contact abuse  
• Study placed restrictions on the relationship between the perpetrator and the victim (e.g. only 

asked about sexual violence committed by a father) 

We also included study-level fixed effects for varying age thresholds across studies.  

• Study asked about recall for events before an age below 15 years (versus reference age threshold 
of 18) 

• Study asked about recall for events before an age between 15 and 17 years (versus reference age 
threshold of 18) 

Two study-level covariate fixed effects on variance (z-cov) were also included in both the male and female 
models, including an indicator that the survey was not nationally representative, as well as whether the 
survey was administered in schools. These study-level covariates were tested as x-covs first, but we did 
not find coefficients which would indicate systematic bias. We have not included any country-level 
covariates to date due to lack of knowledge about a covariate (for which we have a time series for all GBD 
locations) that predicts childhood sexual abuse prevalence. 
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8.8.1 DALYs due to Occupational Risk Factors – SDG Appendix 

Input Data and Methodological Summary  
 

Indicator definition 
This modeling strategy encompassed the indicator associated with DALY rates attributable to 
occupational risks (8.8.1). 

Indicator 8.8.1 
As a component of SDG Goal 8. Promote sustained, inclusive and sustainable economic growth, full and 
productive employment and decent work for all, SDG Target 8.8, protect labour rights and promote safe 
and secure working environments for all workers, including migrant workers, in particular women 
migrants, and those in precarious employment, is measured using SDG Indicator 8.8.1, age-standardised 
all-cause DALY rates (per 100,000) attributable to occupational risks. 

Exposure definitions 
The following definitions were used for occupational risk factor exposures. All exposures were estimated 
for ages 15 and older. 

Occupational Asbestos Cumulative lifetime exposure to occupational 
asbestos, using mesothelioma death rate as an 
analogue 

Occupational Asthmagens Proportion of the working population exposed to 
asthmagens, based on population distributions across 
nine occupational categories 

Occupational Carcinogens (arsenic, 
benzene, beryllium, cadmium, chromium, 
diesel engine exhaust, formaldehyde, nickel, 
polycyclic aromatic hydrocarbons, silica, 
sulfuric acid, and trichloroethylene) 

Proportion of the population that was ever 
occupationally exposed to carcinogens at high or low 
exposure levels, based on population distributions 
across seventeen economic activities 

Occupational Ergonomic Factors Proportion of the working population exposed to low 
back pain-inducing work, based on population 
distributions across nine occupational categories 

Occupational Injuries Proportion of injuries in the working-age population 
attributable to occupational work, based on fatal 
injury rates in seventeen economic activities 

Occupational Noise Proportion of the population occupationally exposed 
to 85+ decibels of noise, based on population 
distributions across seventeen economic activities 

Occupational Particulates Proportion of the population occupationally exposed 
to particulates, based on population distributions 
across seventeen economic activities 

 

379



Economic activities and occupations were coded according to the following categories: 

Economic Activities Occupations 
Agriculture, hunting, forestry Legislators, senior officials, and managers 
Fishing Professionals 
Mining and Quarrying Technicians and associate professionals 
Manufacturing Clerks 
Electricity, gas, and water Service workers and shop/market sales workers 
Construction Skilled agricultural and fishery workers 
Wholesale and retail trade/repair Plant and machine operators and assemblers 
Hospitality Craft and related workers 
Transport, storage, and communication Elementary occupations 
Financial intermediation  
Real estate/renting  
Public administration/defense; compulsory social 
security 

 

Education  
Health and social work  
Other community/social/personal service 
activities 

 

Private households  
Extra-territorial organisations/bodies  

 

Input data 
Primary inputs were obtained from the ILO,1-4 and included raw data on economic activity proportions, 
occupation proportions, fatal injury rates, and employment to population ratio estimates. A systematic 
web review was conducted in order to collect the underlying microdata from the ILO’s estimates to aid 
in re-extraction at greater levels of granularity. Where freely available, survey datasets were 
downloaded from the survey organisations in question. Other datasets were obtained through 
submission of requests to agencies and through the GBD collaborator network. Microdata was tabulated 
in order to create survey-weighted estimates of economic activities and occupations for the GBD 
geographies and years. Various classification systems were crosswalked to ISIC Rev.3 (for economic 
activities) and ISCO 1988 (for occupations). Subnational estimates for UK and China were added to the 
datasets for economic activities and occupations.5,6  

For occupational asbestos, primary inputs were obtained through GBD 2017 cause of death estimates 
and published studies.7,13,14  

Uncertainty for inputs where microdata was unavailable was generated by fitting a Loess curve to the 
data and determining the standard deviation of the data from the fitted curve.  

Modelling strategies 
A Spatio-temporal Gaussian process regression (ST-GPR) was used to generate estimates for all years 
and locations for the primary inputs. Study level covariates used in the prior model were education in 
years per capita, geological covariates (for mining models), the proportion of the population living with 
access to a coastline (for fishing models), the IHME socio-demographic index (SDI), the mean 
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temperature/latitude (for agriculture models), and the proportion of the population living in urban 
areas. Space-time parameters were chosen by maximising out-of-sample cross-validation and 
minimising RMSE. For economic activity and occupation proportions, estimates from ST-GPR were then 
re-scaled to sum to 1 across categories by dividing each estimate by the sum of all the estimates. 

The following sections describe the modelling approaches for each occupational risk’s exposure 
prevalence. 

Occupational carcinogens, occupational noise, and occupational particulates 
Prevalence of exposure to these risks was determined using the following equation: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑙𝑙 =  �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸,𝑐𝑐,𝑦𝑦 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝐸𝐸,𝑟𝑟,𝑙𝑙,𝑑𝑑
𝐸𝐸𝐸𝐸

 

where: 
EAP = economically active population 
EA = economic activity 
a = age 
 

c = country 
d = duration 
l = level of exposure 
 

r = risk 
s = sex 
y =year 

Exposure rate was provided by expert group recommendations and literature8-11 (see table 1). The 
CAREX database was used in order to quantify the association between exposure by industry/carcinogen 
to SDI across all the countries in the database. This effect was used to predict exposure in countries that 
were not included in CAREX. Duration was considered for occupational carcinogens through application 
of occupational turnover factors12 and for occupational noise and particulates by calculating cumulative 
exposure as the average exposure over the lifetime (the past 50 years) for each age/sex cohort. 
 

Occupational ergonomic factors and occupational asthmagens 
Prevalence of exposure to these risks was determined using the following equation: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑠𝑠,𝑎𝑎,𝑟𝑟 =  �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂,𝑐𝑐,𝑦𝑦 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑠𝑠,𝑎𝑎
𝐸𝐸𝐸𝐸

 

where: 
EAP = economically active population 
OCC = occupation 
 

c = country 
a = age 
 

r = risk 
s = sex 
y = year 
 

Occupational injuries 
Occupational injury counts were estimated using the following equation: 
 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠

= �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝐸𝐸,𝑐𝑐,𝑦𝑦,𝑠𝑠 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐,𝑦𝑦,𝑠𝑠,𝑎𝑎 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸,𝑐𝑐,𝑦𝑦
𝐸𝐸𝐸𝐸

 

where: 
EAP = economically active population 
EA = economic activity 
 

c = country 
a = age 
 

y = year 
s = sex 
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Occupational asbestos 
Prevalence of exposure to asbestos was estimated using the asbestos impact ratio (AIR), which is 
equivalent to the excess deaths due to mesothelioma observed in a population divided by excess deaths 
due to mesothelioma in a population heavily exposed to asbestos. Formally, this is defined using the 
following equation: 
 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑦𝑦,𝑠𝑠 −  𝑁𝑁𝑐𝑐,𝑦𝑦,𝑠𝑠 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐,𝑦𝑦𝑦𝑦,

∗ − 𝑁𝑁𝑐𝑐,𝑦𝑦,𝑠𝑠
 

 
where: 

Mort = Mortality rate due to mesothelioma 
Mort* = Mortality rate due to mesothelioma in 
population highly exposed to asbestos 
N = Mortality rate due to mesothelioma in 
population not exposed to asbestos 
 

c = country 
y = year  
s = sex 

Mortality rate due to mesothelioma was estimated from GBD 2017 causes of death.7 Mortality rate due 
to mesothelioma in populations not exposed to asbestos was calculated using the model in Lin et al.,13 
while the mortality rate due to high exposure to asbestos was estimated in Goodman et al.14 Asbestos 
exposure prevalence created using the AIR was used to estimate PAFs for all asbestos-associated causes 
except for mesothelioma. Custom PAFs were calculated for mesothelioma by using the ratio of the 
excess mortality with respect to an unexposed population (Mort – N) divided by the mortality rate in the 
population in question (Mort). This calculation assumes that all mesothelioma is a product of 
occupational asbestos exposure and could potentially over-estimate burden due to occupational 
asbestos exposure in populations with high non-occupational asbestos exposure. 
 

Theoretical minimum-risk exposure level 
For all occupational risks, with the exception of occupational asbestos, the theoretical minimum-risk 
exposure level was assumed to be no exposure to that risk. 
 

Relative risk 
Relative risks were obtained for all occupational risks by conducting a systematic review of published 
meta-analysis. The estimates used, as well as the associated studies, are reported in the Risk Factors 
Capstone Appendix.  

PAFs 
For all occupational risks, with the exception of injuries (outlined below) and mesothelioma (outlined 
above), PAFs were calculated using the prevalences estimated above, using the PAF formula in outlined 
in the GBD 2017 Risk Factors Capstone methods appendix.  

Occupational injuries PAF 
The PAFs for occupational injuries were calculated using the following formula: 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 =  
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐,𝑦𝑦,𝑎𝑎,𝑠𝑠
 

where: 

c = country 
y = year 

a = age 
s = sex 

 

Fatal injury totals were obtained from GBD 2017 causes of death.7  
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17.19.2a Population & Housing Census SDG Appendix 

Input data and Methodology 

Indicator definition 

This strategy encompassed the indicator associated with the indicator associated with housing and 
population censuses (17.19.2a). 

 

Indicator 17.19.2.a 

As a component of SDG Goal 17. To build on existing initiatives to develop measurements of progress on 
sustainable development that complement gross domestic product, and support statistical capacity-
building in developing countries by 2030, is measured using SDG Indicator 17.19.2.a, proportion of 
countries that have conducted at least one population and housing census in the last 10 years.  

Strategy 

We searched the Integrated Public Use Microdata Series (IPUMS) questionnaires, the UN Demographic 
Yearbook, the UN census program census dates, and the International Population Census Biography to 
identify all censuses conducted between 1980 and 2017.1−4 In some cases, the same census was 
reported by different sources in different years. For example, Dominica 1981 incorrectly appears as 1980 
on the IPUMS website. We resolved these inconsistencies based on a review of available documentation. 
A number of countries high income countries do not run censuses directly, preferring to maintain 
administrative databases that capture population information. We included these population registers in 
our list.  In several cases, the United Nations does not recognize administrative splits in territories, such as 
Kosovo and Serbia. If a census occurred in either territory, we report the census as occurring in that year 
in the recognized country. 

References 
1 Goyer DS. The International population census bibliography, revision and update, 1945-1977. New York: 

Academic Press, 1980 https://catalog.hathitrust.org/Record/101176113 (accessed March 30, 2018).  
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https://unstats.un.org/unsd/demographic/sources/census/censusdates.htm (accessed March 30, 
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17.19.2c Well-certified deaths SDG Capstone Appendix 

GBD estimates are most accurate when computed with a full time series of complete VR with a low 
percentage of garbage codes. In GBD 2016, we developed the percent well certified metric to give a 
picture of the quality of data available in a given country over the full time series used in GBD estimates. 
Countries improve well-certified death registration as they increase availability, completeness, and 
detail of their mortality data and reduce the percentage of deaths coded to ill-defined garbage codes or 
highly aggregated causes. We measure this proportion for each location-year of vital registration (VR) 
data. 

For each year of VR, percent well-certified is: 

𝑝𝑝𝑝𝑝𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑑𝑑 =   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × (1 − 𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

Where: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠

𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 1 𝑜𝑜𝑜𝑜 2 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑠𝑠
 

Simplifying this equation, “percent well-certified” is the number of deaths that are registered to a well-
defined cause (those codes which are not Level 1 or 2 garbage or highly aggregated) divided by the GBD 
mortality envelope. 

Not all locations have VR data from 1990-2017, so ST-GPR is used to interpolate the full time series for 
all GBD locations where we have VR data. Locations where we do not have any VR data from 1990-2017 
are zeroed out. The Wilson interval was used to calculate variance prior to ST-GPR interpolation.1 The 
data were modeled as logit percent well-certified, where socio-development index was used as a 
covariate with 1000 draws. 

 
 

                                                            
1 Wilson, EB. Probable Inference, the Law of Succession, and Statistical Inference. Journal of the American Statistical 
Association 1927; 158: 209-212. 

386



Part 2. SDG index construction 
 
In this analysis we have constructed an index that represents overall performance on the health-related 
SDG indicators (referred to as the SDG index). With the exception of health worker density and natural 
disasters, as described below, we follow the same scaling and index construction approach as we used in 
GBD 2015 and GBD 2016.1,2 
 
For rate-space indicators, we first transformed the values to natural log space; proportion indicators were 
not transformed. The resultant indicator distributions were then rescaled to a 0 to 100 scale with 0 being 
the 2.5th percentile and 100 being the 97.5th percentile of the distribution of indicator values over the 
time period 1990 to 2030. The health-related SDG index was then computed by first determining the 
geometric mean of each rescaled health-related SDG indicator for a given target and then taking the 
geometric mean of the resulting values across the targets. This approach weights each of the health-
related SDG targets equally and assumes partial substitutability with high values on one target partly 
compensating for low values on another target. 
 
For health worker density (SDG indicator 3.c.1), we used a modified scaling approach to reflect the 
important roles of each health worker cadre included in the SDG indicator (ie, physicians, nurses and 
midwives, and pharmacists). As described in more detail under the write-up for health worker density 
(appendix section 1), we derived cadre-specific thresholds at which increases in health worker density did 
not result in additional gains on the Healthcare Access and Quality (HAQ) Index.3 These thresholds were 
30 physicians per 100,000; 100 nurses and midwives per 100,000; and 5 pharmacists per 100,000. For 
each location-year where estimates met or exceeded these thresholds, a scaled value of 100 was 
assigned. We selected the 2.5th percentile, by cadre, to set scores of 0, from 1990 to 2030. We then took 
the geometric mean of the scaled health worker cadres, by location-year, to provide scaled results for 
overall health worker density. 
 
For natural disasters, given the stochastic nature of the cause, we used the long-term average over the 
2018 to 2030 period to generate the estimates for the SDG index. 
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Part 3. Projections for the health-related SDGs  
 
Section 1. Overall projection modeling strategy 
We generated projections of the health-related Sustainable Development Goal (SDG) indicators through 
2030 by leveraging the forecasting framework developed by Foreman and colleagues.1 This modelling 
framework has been designed to account for the relationships between risk factors and other 
independent drivers of health outcomes (eg, gains in overall sociodemographic development, select 
interventions such as vaccine coverage and met need for family planning), thus better capturing causal 
pathways of health change shown in randomised control trials and cohort studies. Here we provide more 
detail on how these methods were used to produce projections through 2030 for (1) independent drivers, 
including risk factors, intervention coverage, and some nonfatal health outcomes; (2) cause-specific 
models; (3) HIV; and (4) universal health coverage (UHC) index that approximates UHC service coverage. 
The latter uses a modified version of the overarching forecasting framework to account the effects of 
projected increases in total health spending per capita and potential system efficiencies.2  
 

The underlying forecasting framework produces projections through 2040 for most indicators; because 
we are focused on the SDGs in this analysis, which spans 2015 to 2030, we use these results through 2030 
rather than 2040. In addition, many of the inputs into the forecasting framework are based on Global 
Burden of Disease study (GBD) 2016 results as the 2017 iteration of the GBD study remains in-progress. 
We use these forecasts, which are produced through the full forecasting estimation pipeline of 
independent drivers and their causal relationships, and then shift up or down the forecasted series such 
that the first year of the GBD 2016 forecasts matches last year of the GBD 2017 past estimates, by 
location, year, and draw. This allows us to incorporate the trends predicted by the forecasting model 
while preserving consistency with the levels estimated in GBD 2017. 

 

Table 1. Weights selected with out-of-sample validity testing for projecting the health-related SDGs. Air poll 
mort=Mortality attributable to household air pollution and ambient air pollution. Cert Death Reg=Well-
certified death registration. HRH – Nurses/Midwives=Human resources for health – nurses and midwives . 
HRH – Pharmacists= Human resources for health – pharmacists . HRH – Physicians= Human resources for 
health –  physicians. Int Partner Viol=Intimate partner violence. Malaria incid=Malaria incidence. Mean 
PM2.5=Mean particulate matter smaller than 2.5 microns in diameter. Met need for Family Planning=Met 
need for family planning with modern contraception methods. Non-Int Partner Sex Viol=Non-intimate 
partner sexual violence. Occ burden=Disease burden attributable to occupational risks. Skilled Birth 
Attend=Skilled birth attendance. Smoking prev=prevalence of current smoking. WaSH mort=Mortality 
attributable to unsafe water, sanitation, and hygiene. NTD prev=Prevalence of 18 neglected tropical 
diseases.  

 

Indicator Selected 
Weight 

  Indicator Selected 
Weight 

Air Poll Mort 1.5   Smoking Prev 1.0 
Alcohol Use SEV 4.4   WaSH Mort 1.4 
Cert Death Reg 1.0   Water SEV 5.2 
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Child Overweight 1.7   NTD Prev 
 

Child Sex Abuse 1.2           African Trypanosomiasis 1.7 
Child Stunting 1.7           Ascariasis 1.8 
Child Wasting 1.9           Chagas 0.5 
Household Air Pollution SEV 6.2           Cutaneous and 

Mucocutaneous Leishmaniasis  
1.7 

HRH - Nurses/Midwives 1.0           Cystic Echinococcosis 0.1 
HRH - Pharmacists 1.3           Cysticercosis 1.6 
HRH - Physicians 1.0           Dengue 0.8 
Hygiene SEV 7.0           Food-Borne Trematodiases 1.0 
Int Partner Viol 1.5           Guinea Worm 0.6 
Malaria Incid 1.0           Hookworm Disease 1.7 
Mean PM2.5 0.3           Leprosy 1.8 
Met need for family planning 0.6           Lymphatic Filariasis 1.6 
Non-Int Partner Sex Viol 1.0           Onchocerciasis 1.0 
Occ Burden 1.4           Rabies 1.1 
Physical Violence 0.5           Schistosomiasis 1.0 
Sanitation SEV 5.7           Trachoma 0.5 
Sexual Violence 1.0           Trichuriasis 1.5 
Skilled Birth Attend 1.6           Visceral Leishmaniasis 1.8 
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Section 2. Independent drivers 
Risks and other SDG indicators 

For each risk factor (𝑟𝑟), we calculated the annual change in the logit of the SEV for every location (𝑙𝑙), age 
(𝑎𝑎), sex (𝑠𝑠), and past year (𝑡𝑡 = 1991, … ,2016). In order to dampen the effect of noisy data we replaced 
annual changes (first differences) outside the 15th and 85th percentiles with those percentile-values, 
respectively. 

𝑑𝑑𝑙𝑙,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑟𝑟 = logit�𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑟𝑟� − logit�𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙,𝑎𝑎,𝑠𝑠,𝑡𝑡−1,𝑟𝑟�  

We then computed the annualized rate of change for each country, age, and sex by calculating the 
weighted mean of the first difference over time, where the weights 𝑤𝑤𝑡𝑡 are determined by a recency-
weighting parameter 𝜔𝜔, and scaled to sum to 1.  

𝛿𝛿𝑙𝑙,𝑎𝑎,𝑠𝑠,𝑟𝑟 = mean�𝑑𝑑𝑙𝑙,𝑎𝑎,𝑠𝑠,𝑟𝑟,𝑇𝑇 ,𝑤𝑤𝑟𝑟,𝑡𝑡�  

 

𝑤𝑤𝑟𝑟,𝑡𝑡 = (𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)𝜔𝜔𝑟𝑟   

In order to select weighting parameters 𝜔𝜔, we used data from just 1990 to 2006 to project each risk 
factor to 2016 using values of 𝜔𝜔 ranging, in increments of 0.25, from 0 to 10, and calculated the root-
mean-square error (RMSE) to select the weights.  

 
We applied this same model for SDG indicators not expressly included in the independent driver model 
developed by Foreman and colleagues.1  Our only adjustment was holding out data from 1990 to 2007 to 
project each measure from 2008 to 2017. 

 

Vaccines 

We forecasted coverage for the following 8 vaccines: diphtheria-tetanus-pertussis (DTP) dose 3, measles 
(MCV1), polio, rotavirus, pneumococcal (PCV3), Haemophilus influenzae type B (HIB3), hepatitis B dose 3 
(HepB3), and measles dose 2 (MCV2). These were divided into two types: simple vaccines and ratio 
vaccines, based on how they are modeled in the GBD. The simple vaccines, DTP3, measles, and polio, 
have been introduced in every GBD country, while the ratio vaccines were first introduced more recently 
and have not yet been added to the routine schedule in all countries. These newer generation vaccines 
therefore require the additional step of forecasting introduction dates. Due to the typical scheduling of 
rotavirus, PCV, Hib, and HepB vaccine administration programs, coverage for these vaccines was assumed 
to converge to DTP3 coverage over time (and thus cannot exceed DTP3 coverage). Similarly, MCV2 is 
assumed to converge to MCV1 coverage over time. These vaccines are combined into an aggregate 
indicator of overall vaccine coverage by taking the arithmetic mean of all 8 of them, as is described for 
past estimates (section 1.3). 
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Contraceptive met need 

We consider the proportion of women of reproductive age (15-49 years) who have their need for family 
planning satisfied with modern methods.1 

Reference scenario 

We calculated the weighted annual change in logit transformed contraceptive met need (𝑀𝑀𝑀𝑀) for ages 15 
to 49 for every country and past year (1990 to 2016), using the weight selection method described in 
section 3.1.  The 𝜔𝜔 parameter for met need is 0.6.  

Fertility 

Fertility scenarios were modeled using age specific fertility rates (ASFR) that were aggregated for the total 
fertility rate (TFR) scenarios, where 𝑎𝑎 is age group and 𝑛𝑛𝑎𝑎 is the length of an age group (e.g. 6 days or 5 
years): 

TFR = �𝑛𝑛𝑎𝑎

𝑎𝑎

⋅ ASFR𝑎𝑎 

Reference scenario 

We used three separate models for ASFR, corresponding to the following three sets of age groups: 1) the 
youngest fertile age group (15 to 19 years); 2) fertile age groups (5-year age groups for 20 to 49 years of 
age); and 3) youngest and oldest age groups (10 to 14 and 50 to 54 years of age). 

1) ASFR for the youngest fertile age group was estimated with a two stage model. The first stage 
was a linear model with maternal education (MEDU) and met need for contraception as 
independent variables: 

Logit(ASFR𝑎𝑎,𝑙𝑙,𝑡𝑡) = 𝛽𝛽𝑎𝑎MEDU𝑎𝑎,𝑙𝑙,𝑡𝑡 + 𝛾𝛾𝑎𝑎met_need𝑎𝑎,𝑙𝑙,𝑡𝑡 + 𝜖𝜖𝑎𝑎,𝑙𝑙,𝑡𝑡 

where 𝜖𝜖𝑎𝑎,𝑙𝑙,𝑡𝑡 ∼ 𝒩𝒩(0,𝜎𝜎1). 

The second stage was used to estimate location specific errors with an autoregressive model of 
order 1: 

𝜖𝜖𝑎𝑎,𝑙𝑙,𝑡𝑡 = 𝑐𝑐 + 𝜓𝜓𝜖𝜖𝑎𝑎,𝑙𝑙,𝑡𝑡−1 + 𝜂𝜂𝑎𝑎,𝑙𝑙,𝑡𝑡  

where 𝜂𝜂𝑎𝑎,𝑙𝑙,𝑡𝑡 ∼ 𝒩𝒩(0,𝜎𝜎2) 

The forecasts were shifted to match past coverage. 

2) ASFR for the fertile age groups were estimated with a similar model, with two changes made to 
the first stage. First, a cohort lag component was added to the model. Second, a linear spline was 
applied to the maternal education term (MEDU). The resulting first stage linear model was 

Logit�ASFR𝑎𝑎,𝑙𝑙,𝑡𝑡� = 𝛽𝛽𝑎𝑎met_need𝑎𝑎,𝑙𝑙,𝑡𝑡 + 𝜆𝜆𝑎𝑎ASFR𝑎𝑎−𝑁𝑁𝑎𝑎,𝑙𝑙,𝑡𝑡+𝑁𝑁𝑎𝑎 + �𝛾𝛾𝑎𝑎
[𝑥𝑥]MEDU𝑎𝑎,𝑡𝑡

[𝑥𝑥]

𝑥𝑥∈𝑋𝑋

+ 𝜖𝜖𝑎𝑎,𝑙𝑙,𝑡𝑡  

where the knots 𝑋𝑋 were less than 6 years of maternal education, between 6 and 10 years of 
education, between 10 and 14 years of education, and greater than 14 years of education. There 
were no changes to the second stage of the model. 
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3) The youngest and oldest age groups were estimated using LOESS fits on data from the Human 
Fertility Database used in GBD 20163: 

ASFR10 ∼ LOESS(ASFR15), 

ASFR50 ∼ LOESS(ASFR45) 

Each LOESS was fit using data from all available past years and locations. 
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Section 3. Cause models 
Overview  

The forecasting model is cause-specific and separate for males and females and also generates estimates 
of all-cause mortality that are the sum of cause-specific estimates. The logarithm of the cause-specific 
mortality is modeled as the sum of three components: 1) underlying mortality; 2) a scalar that captures 
the combined effects of risk factors on the specific cause, accounting for mediation; and 3) and ARIMA 
model for the unexplained residual. The underlying mortality is modeled with terms for development 
(SDI) and calendar time. The scalar is a function of all the GBD risk factors relevant to each cause and 
select interventions tracked in the GBD.  The third component is ARIMA forecasting of the residuals of the 
first two components model (underlying mortality plus combined effect of risk factors).  

We develop a forecast or reference scenario which is meant to represent the most likely future trajectory 
of health given past trends of the independent drivers and the observed past relationships between 
independent drivers and each cause of death. The forecast is not what will happen only what would most 
likely happen if past trends and relationships continue into the future.  

 

Cause-Specific Mortality Modeling 
Accounting for risk factors 
We took advantage of the relationships between drivers and mortality that we will describe in detail in 
Section 5 to come up with an additive relationship (in log space) between underlying mortality rate 𝑚𝑚𝑈𝑈, 
the risk factor scalar 𝕊𝕊, and total cause-specific mortality 𝑚𝑚𝑇𝑇: 

𝑚𝑚𝑇𝑇 = 𝑚𝑚𝑈𝑈 × 𝕊𝕊 

Taking the logarithm gives 

ln(𝑚𝑚𝑇𝑇) = ln(𝑚𝑚𝑈𝑈) + ln(𝕊𝕊). 

 
We thus accounted for risk factors by including ln(𝕊𝕊) as an offset when modeling total cause-specific 
mortality. 

Basic model 

We assumed that underlying mortality 𝑚𝑚𝑈𝑈 could be estimated as a function of SDI, location, age, and 
time. We used a model with location-age-specific intercepts 𝛼𝛼, a global effect on SDI 𝛽𝛽, and age-specific 
effects on the secular trend 𝜃𝜃𝑎𝑎. 

ln(𝑚𝑚𝑇𝑇) ∼ 𝒩𝒩(𝑦𝑦,𝜎𝜎)

𝑦𝑦 = 𝛼𝛼𝑙𝑙𝑙𝑙 + 𝛽𝛽0𝑆𝑆𝑆𝑆𝑆𝑆<0.8 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆≥0.8 + 𝜃𝜃𝑎𝑎𝑡𝑡 + ln(𝕊𝕊)
 

 

For some causes, other independent variables with strong known relationships for which data are 
available (ie, age-specific fertility for maternal causes, HIV mortality for maternal HIV, vehicles per capita 
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for road injuries) or risk factors which cannot be quantified in terms of RR because they are part of the 
disease definition (eg, systolic blood pressure for hypertensive heart disease, fasting plasma glucose [FPG] 
for diabetes, alcohol consumption for alcohol-related cirrhosis; others are listed later in this appendix [pp 
14]) were added as additional covariates to the model.  

In addition, for a few non-communicable diseases with strong evidence of recent accelerated progress 
beyond what would be expected by SDI alone, we include an SDI*time interaction effect to capture this. 
These causes include ischaemic heart disease, diabetes, and all of the child causes of cirrhosis, stroke, and 
chronic kidney disease. Due to the collinearity of SDI, time, and other covariates in some causes of death, 
several models with the above formulation did not converge. To address this, all models with one or more 
coefficients whose standard deviation was more than 1000 times the absolute value of the median 
coefficient value were rerun without SDI. If the new formulation also did not converge, all covariates 
besides time were dropped from the underlying mortality formulation and the model was run once more. 

 

Additionally, because SDI is included as an input to the vaccine forecasts, it was excluded as a covariate 
for all vaccine-dependent causes of death except lower respiratory infections.  

 
Smoothing priors 
By including the scalar 𝕊𝕊 as an offset in the model, we were able to place Girosi-King (2008) type priors on 
the total cause-specific mortality while modeling underlying mortality.13 These biased the model towards 
parameterizations that produce consistent age patterns over time by adding a penalty function based on 
the dot product of the first derivatives of adjacent age groups over time. 

Modeling Latent Trends 

The residuals 𝜖𝜖 from the basic model represent latent trends in total cause-specific mortality not 
captured by risk factors, SDI, and global secular trends. 

𝜖𝜖 = ln(𝑚𝑚𝑇𝑇) − 𝑦𝑦  

We forecasted the latent trends by using an 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1,0,0 model, which combines an autoregressive model 
to capture overall trends and a differencing step to ensure stationarity and reflect expanding uncertainty 
in the future. However, running independent ARIMA models on the residuals of every cause, location, and 
age is not very robust and can lead to extreme forecasts. Therefore, we used a pooled model, which 
enabled us to share ARIMA parameters within geographic super-regions (𝑠𝑠). 

𝜖𝜖𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 𝒩𝒩(𝜖𝜖𝑙𝑙𝑙𝑙𝑙𝑙 ,𝜎𝜎)

𝜖𝜖𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜓𝜓𝑠𝑠𝑠𝑠𝜖𝜖𝑙𝑙𝑙𝑙𝑙𝑙−1 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠

𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 ∼ 𝒩𝒩(0, 𝜏𝜏𝑠𝑠𝑠𝑠)

Cascading Mortality Models 

394



In addition to using the above framework to model cause-specific latent trends, we also modeled the 
residuals at higher levels of the cause hierarchy in order to prevent a few unusual cause-specific trends 
from dominating our all-cause forecasts. 

First, we generated all-cause total mortality predictions and residuals by summing up cause-specific 
forecasts based on risk factors, SDI and global secular trends. 

𝑌𝑌 = ln(�𝑒𝑒𝑦𝑦𝑐𝑐
𝐶𝐶

𝑐𝑐

) 

𝐸𝐸 = ln(𝑀𝑀) − 𝑌𝑌 

 
We then used an equally-weighted blend of arima models to forecast these latent trends in the same way 
as the cause-specific forecasts. The latent trends in the summed all-cause are more robust than those 
from the cause-specific models alone, so modeling them at the location-age-sex specific level is more 
feasible. For the blend, we took an equal number of draws from each of four ARIMA specifications: 
ARIMA(1, 0, 0), ARIMA(1, 1, 0), ARIMA(1, 0, 0) + constant, and ARIMA(1, 1, 0) + constant. These 
correspond to 

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 𝒩𝒩(𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 ,𝜎𝜎) 

 

with ARIMA(1, 0, 0): 

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜓𝜓𝑙𝑙𝑙𝑙𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−1 + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 𝒩𝒩(0, 𝜏𝜏𝑙𝑙𝑙𝑙),

 

ARIMA(1, 1, 0): 

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−1 + 𝜓𝜓𝑙𝑙𝑙𝑙(𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−1 −  𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−2) + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 𝒩𝒩(0, 𝜏𝜏𝑙𝑙𝑙𝑙),

 

ARIMA(1, 0, 0) + constant: 

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜓𝜓𝑙𝑙𝑙𝑙𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−1 + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 𝒩𝒩(𝛿𝛿𝑙𝑙𝑙𝑙, 𝜏𝜏𝑙𝑙𝑙𝑙),

 

 

ARIMA(1, 1, 0) + constant: 

𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−1 + 𝜓𝜓𝑙𝑙𝑙𝑙�𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−1 −  𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙−2� + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 𝒩𝒩(𝛿𝛿𝑙𝑙𝑙𝑙, 𝜏𝜏𝑙𝑙𝑙𝑙),

 

 
By adding our estimated all-cause latent trends to the sum of our cause-specific forecasts (Note: not 
including cause-specific latent trends), we then generated robust all-cause mortality forecasts. 

𝑀̂𝑀 = 𝑒𝑒𝑌𝑌+𝐸𝐸 
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We then repeated this method, though without the blend, for successive levels of the cause hierarchy. 
For instance, we calculated group I, II, and III mortality by finding residuals at each level and then 
forecasting them using the pooled AR1 [ARIMA (1,0,0)] method described for the cause-specific models. 

Then, we generated robust forecasts of cause-specific mortality at each level by generating a forecasted 
cause fraction and multiplying it by the forecasted parent cause mortality. 

𝑚̂𝑚𝑐𝑐 = 𝑒𝑒𝑦𝑦𝑐𝑐+𝜖̂𝜖𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ˆ 𝑐𝑐 =
𝑚̂𝑚𝑐𝑐

∑ 𝑚̂𝑚𝑖𝑖
𝐶𝐶
𝑖𝑖

 

 

𝑚𝑚𝑐𝑐
∗ = 𝑀̂𝑀 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ˆ 𝑐𝑐 

 
We did this successively down the cause hierarchy, so that child causes were constrained to the parent, 
but the parent causes still reflected the risk factors and underlying trends driving each child cause. Latent 
trends for group I causes were pooled at the region-age-sex level, and latent trends for groups II, III, and 
IV were pooled at the super-region-age-sex level. Modelling relationships between drivers and mortality 
 

Modeling overview by cause and sex 
We forecasted cause-specific mortality rates 𝑚𝑚 by cause of death 𝑐𝑐, location 𝑙𝑙, age group 𝑎𝑎, and year 𝑡𝑡. 
This calculation uses population at mid-year to calculate mortality rate. 

𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
deaths𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

pop𝑙𝑙𝑙𝑙𝑙𝑙
 

The all-cause mortality rate 𝑀𝑀 is the sum of cause-specific mortality rate 𝑚𝑚𝑐𝑐  by location, age group, and 
year. 

𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶

𝑐𝑐

 

Mediation, Scalars, and Population Attributable Fractions (PAFs) 
We generated an estimated risk-specific (𝑟𝑟) 𝑃𝑃𝑃𝑃𝑃𝑃ˆ  in the future by converting the forecasted 𝑆𝑆𝑆𝑆𝑆𝑆ˆ  values to 
𝑃𝑃𝑃𝑃𝑃𝑃ˆ  as follows (see section 4 for an explanation of 𝑆𝑆𝑆𝑆𝑆𝑆ˆ  forecasts): 
 

𝑃𝑃𝑃𝑃𝑃𝑃ˆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 −
1

𝑆𝑆𝑆𝑆𝑆𝑆ˆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 1) + 1
 

𝑃𝑃𝑃𝑃𝑃𝑃ˆ  estimates depend on 𝑆𝑆𝑆𝑆𝑆𝑆ˆ , which is not cause-specific; therefore we expect a bias in logit-
transformed space, which is the space where exposures are modelled.  We try to correct for this bias by 
forcing our estimated values to agree with the GBD in the year 2016.  This is done by first taking a 
reference 𝑃𝑃𝑃𝑃𝑃𝑃 directly computed from exposure and cause-specific relative risks available in the GBD: 
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𝑃𝑃𝑃𝑃𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
∑ 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 × 𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥𝑥𝑥𝑋𝑋
𝑥𝑥 − 1
∑ 𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 × 𝑅𝑅𝑅𝑅𝑥𝑥𝑥𝑥𝑥𝑥𝑋𝑋
𝑥𝑥

 

 
where 𝑥𝑥 corresponds to the different exposure levels of the risk factor. This is followed by calculating the 
correction factor 𝐶𝐶𝐶𝐶 via comparing (in logit space) the GBD 𝑃𝑃𝑃𝑃𝑃𝑃 to the 𝑆𝑆𝑆𝑆𝑆𝑆ˆ -derived estimated 𝑃𝑃𝑃𝑃𝑃𝑃ˆ  in 
the reference year 2016: 

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = logit(𝑃𝑃𝑃𝑃𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2016) − logit(𝑃𝑃𝑃𝑃𝑃𝑃ˆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2016) 

This correction factor is necessary because the 𝑆𝑆𝑆𝑆𝑆𝑆ˆ  is summarized across all of the causes of death 
related to that risk factor. If there are different patterns of relative risk by exposure level for different 
causes of death for the same risk factor, there is some information loss attributable to this dimensionality 
reduction. Since that correction factor is relatively stable over time, we can simply add it to each year in 
the forecast to approximate the cause-risk-specific 𝑃𝑃𝑃𝑃𝑃𝑃ˆ  accounting for these different relative risk 
curves. 

 
We applied the correction factor to the estimated 𝑃𝑃𝑃𝑃𝑃𝑃ˆ  to come up with an adjusted estimated 𝑃𝑃𝑃𝑃𝐹𝐹∗: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∗ = expit(logit(𝑃𝑃𝑃𝑃𝑃𝑃ˆ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

To properly estimate the joint 𝑃𝑃𝑃𝑃𝑃𝑃 of all risks, one must take into account of how one risk factor is 
mediated through other risk factors.  The fraction of one risk that is mediated through another is called 
Mediation Factor (𝑀𝑀𝑀𝑀).11  Using risk mediation factors provided in the GBD 2016, we computed the joint 
(adjusted) 𝑃𝑃𝑃𝑃𝑃𝑃 of all risks for a cause: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 −�(
𝐽𝐽

𝑗𝑗=1

1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 × �(
𝐽𝐽

𝑖𝑖=1

1 −𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗𝑗𝑗)) 

Where J is a set of risk factors for the aggregation and 𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗𝑐𝑐 is the mediation factor for risk j mediated 
through i for cause c.  Since 𝑃𝑃𝑃𝑃𝑃𝑃 is the ratio of risk-attributable cause-specific deaths to total cause-
specific deaths, we can relate total cause-specific mortality 𝑚𝑚𝑇𝑇 to underlying cause-specific mortality 𝑚𝑚𝑈𝑈. 
 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑚𝑚𝐴𝐴

𝑚𝑚𝑇𝑇
&

𝑚𝑚𝑇𝑇 = 𝑚𝑚𝐴𝐴 + 𝑚𝑚𝑈𝑈
∴

𝑚𝑚𝑇𝑇 = 𝑚𝑚𝑈𝑈 ×
1

1 − 𝑃𝑃𝑃𝑃𝑃𝑃

 

 

Finally, we generated a risk factor scalar 𝕊𝕊, corresponding to the ratio of total cause-specific mortality to 
underlying cause-specific mortality. 
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𝕊𝕊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

1 − 𝑃𝑃𝑃𝑃𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

For some cause-risk factor pairs, the PAF is 1 because exposure to the risk factor is part of the disease 
definition itself. These are systolic blood pressure for hypertensive heart disease and hypertensive 
chronic kidney disease, fasting plasma glucose for diabetes mellitus, alcohol consumption for alcohol-
related cirrhosis of the liver, underweight for protein energy malnutrition deaths, iron deficiency for 
aenemia deaths, alcohol consumption for alcohol-related cardiomyopathy, impaired kidney function for 
chronic kidney disease, low birth-weight for preterm birth complication deaths, and occupational 
exposure to particulates and silica for certain subtypes of pneumonia deaths. In these cases, the risk 
factors are excluded from the risk-factor scalar and instead their SEVs are included as additional 
covariates in the mortality model. In addition, we model rotavirus mortality separate from other 
diarrhoeal disease mortality since we include rotavirus vaccination coverage forecasts as an independent 
driver. We then sum up other diarrhoeal and rotavirus diarrhoeal deaths. 

 

Using Causes of Death Forecasts to Inform Nonfatal Outcomes 

To preserve the relationships between projected mortality and nonfatal health outcomes, we computed 
mortality-to-incidence ratios for tuberculosis and hepatitis B to predict incidence through 2030.  

Tuberculosis 
Incidence of Tuberculosis without HIV (TB) was forecasted using a mixed-effects model with the ratio of 
mortality to incidence (MI) for TB without HIV as the dependent variable and Healthcare Access and 
Quality (HAQ) as the independent variable. We used a model with region-age-specific intercepts ∝𝑟𝑟,𝑎𝑎 and 
a region-age-specific trend on HAQ, 𝜃𝜃𝑟𝑟,𝑎𝑎. The MI ratios for sexes were modeled independently of each 
other. After fitting the regression, MI ratio predictions were made using forecasted HAQ and then 
converted to incidence estimates through multiplication of the mortality forecasts.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀)𝑎𝑎,𝑙𝑙,𝑡𝑡� = 𝛼𝛼𝑟𝑟,𝑎𝑎 + 𝜃𝜃𝑟𝑟,𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙,𝑡𝑡 

Similarly, incidence of Tuberculosis with HIV (TB/HIV) was forecasted using a mixed-effects model with 
the same covariate and mixed-effect structure, but with a slightly different dependent variable. Here the 
incidence to prevalence ratio (IP) being forecasted was generated with the aggregate incidence of Drug-
susceptible TB, Multi-drug resistant TB, and Extensively drug resistant TB divided by the prevalence of 
HIV. The forecasted ratios were then multiplied by HIV prevalence forecasts to generate final TB with HIV 
incidence estimates. More detail on HIV forecasting methods is described in section 3.4. 

I𝑠𝑠,𝑙𝑙,𝑎𝑎,𝑡𝑡
𝑇𝑇𝑇𝑇 = �𝑖𝑖ℎ,𝑠𝑠,𝑙𝑙,𝑎𝑎,𝑡𝑡

𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡

 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼)𝑎𝑎,𝑙𝑙,𝑡𝑡� = 𝛼𝛼𝑟𝑟,𝑎𝑎 + 𝜃𝜃𝑟𝑟,𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙,𝑡𝑡 

Both of these forecasts were then aggregated and intercept shifted to GBD 2017 estimates to generate 
forecasts of total TB-incidence.  
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Hepatitis B 
Incidence of Hepatitis B was forecasted using the MI ratio of the aggregate mortality rates for acute 
Hepatitis B, Hepatitis B from liver cancer, and Hepatitis B from cirrhosis divided by the incidence of Acute 
Hepatitis B.  

M𝑠𝑠,𝑙𝑙,𝑎𝑎,𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻 𝐵𝐵 = �𝑚𝑚ℎ,𝑠𝑠,𝑙𝑙,𝑎𝑎,𝑡𝑡

𝐻𝐻

ℎ

 

The MI ratio was modeled using the same specifications as the MI ratio described in the TB without HIV 
incidence forecasts, and this ratio was then multiplied by the forecasted aggregate mortality in order to 
generate total Hepatitis B incidence.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡(𝑀𝑀𝑀𝑀)𝑎𝑎,𝑙𝑙,𝑡𝑡� = 𝛼𝛼𝑟𝑟,𝑎𝑎 + 𝜃𝜃𝑟𝑟,𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝑙𝑙,𝑡𝑡 

Causes of Death Forecasted Outside the Main Framework 

War, legal interventions, and disasters 

Deaths due to stochastic events including wars, terrorism, legal interventions, and natural disasters were 
forecasted for each year in the future by randomly sampling from past death rates from 1990 to 2016,  

𝑚𝑚�𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙 =  𝑚𝑚𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑙𝑙 ,  

 

∀𝑎𝑎 ∈ 𝐴𝐴,∀𝑠𝑠 ∈ 𝑆𝑆,∀𝑙𝑙 ∈ 𝐿𝐿 

where  𝑚𝑚�𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙 is the age-sex-location-specific mortality rate for the future year 𝑓𝑓 ∈ [2017, 2040], and 
𝑚𝑚𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑙𝑙 is the age-sex-location-specific mortality rate of random past year 𝑟𝑟~𝑈𝑈(1990,2016), 𝐴𝐴 is all of 
the ages, 𝑆𝑆 is both of the sexes, and 𝐿𝐿 is all of the countries. To maintain correlation among ages, sexes, 
and countries, a single past year 𝑟𝑟 was randomly selected for a given future year 𝑓𝑓. For example, if we 
randomly selected the year 1997 for the year 2030, then the mortality rate for Canadian 20-24 year-old 
females in 2030 would be inferred from the mortality Canadian 20-24 year-old females in 1997, while the 
mortality rate for Japanese 40-44 year-old males in 2030 would be inferred from the mortality Japanese 
40-44 year-old males in 1997. 

In the next step, we applied an SDI-adjustment factor derived from the degree to which increases in SDI 
have reduced mortality from those events in the past. To do this, we fit a local  regression (LOESS) on past 
mortality rates, 𝑚𝑚𝑠𝑠,𝑎𝑎,𝑡𝑡𝑝𝑝,𝑙𝑙, where 𝑡𝑡𝑝𝑝  ∈ [1990, 2016], and past and forecasted SDI, 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑙𝑙, where 𝑡𝑡 ∈
[1990, 2040]. We extended the traditional LOESS regression to allow us to extrapolate to SDI forecasts. 
This regression was performed for each sex and age groups separately, but across all years and countries 
together. The model is 

ln�𝑚𝑚𝑠𝑠,𝑎𝑎,𝑡𝑡,𝑙𝑙
∗ � ~ 𝛽𝛽𝑠𝑠,𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑙𝑙  

where 𝑚𝑚𝑠𝑠,𝑎𝑎,𝑡𝑡,𝑙𝑙
∗  is the LOESS-predicted sex-age-year-location-specific mortality rate, 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑙𝑙 is the year-

location-specific SDI, and 𝛽𝛽𝑠𝑠,𝑎𝑎 is the sex-age-specific effect of SDI on the mortality rate.  Here 𝑡𝑡 ∈
[2017, 2040], so 𝑚𝑚𝑠𝑠,𝑎𝑎,𝑡𝑡,𝑙𝑙

∗  has values for both past and future years.  
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We used these LOESS-predictions to generate an adjustment factor for the randomly selected past 
mortality rate. The adjustment factor is the ratio of the LOESS-predicted mortality for the future year 
divided by the LOESS-predicted mortality of the year that was randomly selected to represent that future 
year’s mortality rate. In log space, this is calculated as 

𝜙𝜙𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙 =  ln�𝑚𝑚𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙
∗ � −  ln�𝑚𝑚𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑙𝑙

∗ � 

where 𝑚𝑚𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙
∗  is the LOESS-predicted mortality rate of the future year 𝑓𝑓 and 𝑚𝑚𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑙𝑙

∗  is the LOESS-
predicted mortality rate of the randomly selected past year 𝑟𝑟. 

The final estimate of the future year’s mortality rate was the observed value of the randomly selected 
past year multiplied by the correction factor. 

𝑚𝑚�∗𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙 = exp (𝜙𝜙𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙 + ln�𝑚𝑚�𝑠𝑠,𝑎𝑎,𝑓𝑓,𝑙𝑙�) 

Due to the enormous magnitude of the war-related mortality rate during the genocide in Rwanda in 
1994, in Rwanda we replace any draws of war-related mortality rates greater than the 95th percentile 
with the median across draws for each age, sex, year in the forecasts. 
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Section 4. HIV 
Antiretroviral therapy for HIV/AIDS coverage  
In recent years, we have seen a massive scale up of ART treatment among low-income nations, who 
through large internal investments and substantial development assistance have been able to increase 
ART access considerably. For that reason, if past trends in ART coverage for each country are simply 
scaled up in projections using a logistic curve, all countries would be projected to achieve 100% coverage 
by 2030. Given limitations on coverage by health system capacity, and due to the cost of treatment, we 
bound ART projections with a frontier by income level to reflect resource availability. 

 

Cross-walking Cross-Sectional and Spectrum CD4 Definitions  
In order to model the relationship between income and ART coverage, we must also consider CD4 count 
as a major stratifying variable, since individuals who are sicker (with lower CD4 counts) are more likely to 
have received a diagnosis and treatment. Survey data provides cross-sectional CD4 count information; 
however, the Spectrum modeling framework tracks individuals by categorical CD4 count at the initiation 
of treatment. Therefore, in order to model the relationship between CD4-specific ART coverage and 
income in a format that aligns with Spectrum, we cross- walked cross-sectional CD4 values to CD4 at 
treatment initiation.  
 
We extracted information on the average CD4 progression over time after the initiation of ART treatment 
from a number of cohort studies.1-8  We used a natural spline model to parameterize CD4 count response 
to treatment over time. Our outcome variable , was the difference in the average CD4 count for a cohort i 
at time t from the value at the beginning of treatment, time t0: 

𝑌𝑌𝑌𝑌,=𝐶𝐶𝐶𝐶4𝑖𝑖,𝑡𝑡− 𝐶𝐶𝐶𝐶4𝑖𝑖,𝑡𝑡0 

 

We model this change over time using the following model: 

𝑌𝑌𝑖𝑖,=𝑆𝑆1𝑡𝑡∗𝐶𝐶𝐶𝐶4𝑖𝑖,𝑡𝑡0+𝑆𝑆2𝑡𝑡 

 

Where 𝑆𝑆2𝑡𝑡 is a natural spline on the number of months since treatment initiation, and (𝑆𝑆1𝑡𝑡∗𝐶𝐶𝐶𝐶4𝑖𝑖,0) is a 
natural spline on the number of months interacted with the starting average CD4 count of the cohort. 
Both spline bases use knots at 3, 12, 24, and 36 months. The model was fit, for each of the CD4 cut-points 
used to define compartmental categories in the Spectrum modeling framework (0-49,50-99,100-199,200-
249,250-349, 350-500, and 500+). We then use the progression curves from this model to categorically 
backcast each individual observed in our cross-sectional survey data sources to one of the 
aforementioned categories. 
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Figure 1. Categorical backcast of survey microdata using modelled progression curves. 

 

Modeling ART Coverage Frontier as a Function of Income and CD4 Count 
To obtain realistic forecasts of ART coverage it is important to place bounds on the coverage relative to 
resources that are expected to be available. We identified two publically available survey datasets, the 
2011 Uganda and 2012 Kenya AIDS Indicator Survey, that provide person-level information regarding the 
distribution of ART coverage by CD4 count. CD4 information for each participant was obtained from 
laboratory test values, and cross-walked to the Spectrum definition as described in the previous section. 
As a proxy for income, we used a household asset index based on assets present in the respondent’s 
home, converted to international dollars.9  A logistic curve describing the relationship between ART 
coverage and income is then fit, controlling for CD4 count, age and sex, using a logistic regression: 

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝛽𝛽0 +𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽2𝐶𝐶𝐶𝐶4 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽4𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  

 

We used the predicted probabilities from this model to fit a stochastic frontier analysis, which estimates 
the maximum possible coverage for a given degree of income and CD4 count. Formally, we estimate: 

log (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)+𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)=𝛽𝛽0+ 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼+𝛽𝛽2𝐶𝐶𝐶𝐶4 
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Figure 2. Predicted probabilities of coverage for each individual shown as points. Frontier of coverage as a 
function of income is shown with lines. Color indicates categorical CD4 count. 

 

ART Price Forecasts  
Forecasting ART Prices  
In order to forecast ART coverage, an understanding of the cost of ART treatment over time is necessary. 
We created estimates and projections of the average cost of ART treatment using data from the Global 
Price Reporting Mechanism (GPRM).28 From the GPRM we obtained 1,175 country-years of data 
representing the average cost of ART in dollars per person per year, covering 130 countries and spanning 
2004-2016. We used a stochastic frontier analysis and Gaussian process regression modelling framework 
to complete the time series and project the estimates through 2030. 

 

Stochastic Frontier Analysis  
In order to bound the future minimum cost plausibly, we use a stochastic frontier analysis to model the 
minimum ART price possible over time.29 First we create the outcome variable by transforming cost, by 
rescaling to an inverse zero to one scale, where 0 is the lowest observed cost and 1 is the highest. This is 
necessary as the stochastic frontier analysis function is used to find a maximum value. Therefore, the 
outcome must be rescaled to find a minimum cost frontier. We then take the logit of this transformed 
cost variable, which creates our outcome variable:  

𝑌𝑌𝑌𝑌,=𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙( (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡− min (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡)) / 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡) +𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 
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We then fit a stochastic frontier analysis, with time as the independent variable, assuming a truncated 
normal distribution for the extent to which countries fall short of obtaining the minimum achievable ART 
price. 

 

Gaussian Process Regression  
We used Gaussian process regression (GPR) to complete the time series and make projections through 
the year 2030. GPR has been used extensively in the Global Burden of Disease estimation framework as a 
data synthesis tool.10, 11 The mean function is a linear model which models the log of the difference 
between the cost frontier and the current cost, as a function of lag-distributed GDP per capita (LDI) and 
super-region secular trends:12 

Consistent with prior implementations of GPR, a Matérn covariance function was used to smooth the 
residuals from the first stage mean function, and produce complete time series with uncertainty.11   

 

 

Figure 3. Median and IQR of ART price over time globally, alongside the cost frontier as a dashed line. All 
series are shown in USD. 

 

Forecasting Spectrum Inputs  
A number of inputs to ART forecasting, incidence hazard forecasting, and Spectrum HIV modeling systems 
are treated as exogenous inputs. Projection for these inputs were created using a rate of change 
approach, consistent with that used across the forecasting platform. These inputs include: 

• ART Price 
• Lag Distributed GDP per capita 
• Child ART coverage 
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• Cotrimoxazole coverage among children 
• Coverage of medication used to prevent mother-to-child transmission of HIV (PMTCT) in the 

prenatal and postnatal periods 
 

For each indicator, the distribution of the rate of change across countries was calculated. The time series 
in each indicator was projected assuming each country grows in the future at the 50th percentile of the 
past rate of change across countries. Inputs that represent a coverage indicator, including PMTCT, 
cotrimoxazole, and ART, were forecasted in logit space, while the remaining indicators were modeled in 
log space. 

 

Forecasting ART Coverage  
ART coverage is projected using the ART bounds described above in the ART coverage frontiers section, as 
well as spending on HIV care and treatment that is forecasted independently.12 In order to account for 
the changing costs of ART over time, the HIV spending covariate is rescaled to “dose equivalents” by 
dividing by ART cost. The relationship between country-year specific ART coverage is then modelled with 
a slope on dose-equivalents of HIV spending and fixed intercepts for each CD4 group. 

 

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑡𝑡)=𝛽𝛽1Spend + (𝛽𝛽2𝐶𝐶𝐶𝐶40−49∗𝐼𝐼0−49)… (𝛽𝛽8𝐶𝐶𝐶𝐶4500+∗𝐼𝐼500+) 

 

Projected ART values were bounded using the frontiers estimated as described above, or the largest value 
observed in the past for the time series in question, whichever is larger. We then forecast ART coverage 
at the granularity it is used in Spectrum, specific to single-year age and sex groups, as well as draws used 
in Spectrum to propagate uncertainty: 

 

(𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑑𝑑)= 𝛽𝛽1Spend + (𝛽𝛽2𝐶𝐶𝐶𝐶40−49∗𝐼𝐼0−49)… (𝛽𝛽8𝐶𝐶𝐶𝐶4500+∗𝐼𝐼500+)+ ∅𝑐𝑐,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑑𝑑 

 

where ∅𝑐𝑐,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑑𝑑 is a country-year-age-sex-draw specific intercept shift term, used to ensure no 
disjunctions in the first year of the forecasts by removing the difference from year 2017 to year 2018 
from all forecasted estimates for each time series. 

 

HIV Incidence Hazard  
Incidence hazard, the rate of new infections among the susceptible population, is a key input to the 
Spectrum modeling process. We forecast incidence hazard using ART projections as well as a rate of 
change approach similar to those described above with respect to the trend in the counterfactual 
incidence hazard, the expected hazard if ART coverage were zero. A time series of incidence hazard from 
1970 through 2017 for each location is taken from GBD 2017 final estimates, then counterfactual 
incidence hazard is calculated as: 

 

405



𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑖𝑖 =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑐𝑐,𝑎𝑎,𝑠𝑠,𝑡𝑡,𝑖𝑖
1−(ARTc,a,s,t,i ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆c,a,s,t,i )

  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ~ (.6,.8) 

 

Where ART is the proportion of HIV+ individuals receiving ART, hazard is the number of new HIV 
infections over population at risk, and viral suppression is the proportion of individuals taking ART who 
achieve viral suppression. We assumed that a mean of 70% of the on-ART population reached viral 
suppression and created uncertainty by taking draws from a uniform distribution ranging from 60% - 80%, 
aligning with assumptions in the EPP model developed by UNAIDs. 

Consistent with the approach taken to forecast the independent drivers, projections for the secular trend 
in the counterfactual hazard is created by calculating the rate of change across countries over the 
previous five years, and assuming each country changes in the future at the 50th percentile of the past 
rate of change across countries. The final projected hazard rates therefore decreases in response to 
improvements in ART coverage, as well as change due to the underlying secular trend in the 
counterfactual hazard. 

 

Projections of HIV incidence  
In order to produce age- and sex-specific estimates of HIV incidence, we input the projections of 
incidence hazard along with the other independent drivers into the Spectrum model. Spectrum is a 
cohort component model originally developed by UNAIDs that we have modified to incorporate CD4-
specific probability of treatment in addition to a number of other methods developments made for 
GBD.13, 14 Spectrum ages a population over time using demographic parameters while applying HIV 
incidence hazard, disease progression, CD4-specific treatment coverage, and mortality. Our final 
estimates of HIV incidence and ART coverage are age-, sex-, location-specific Spectrum outputs through 
2030. 
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Section 5. UHC index 

Universal health coverage (UHC) has emerged as both a global and national health priority, with achieving 
UHC viewed as a critical path to improved health outcomes and greater equity in health across all 
populations. This section focuses the method used for forecasting the UHC service coverage index from 
2018 through 2040 using our health financing variables, particularly the sum of GHE, DAH and PPP per 
capita, hereby referred as ‘pooled health resources per capita’ or ‘pooled spending per capita’. Further 
detail on the construction of the UHC service coverage is found elsewhere in this appendix. 

 

Stochastic Frontier Analysis 

We used a stochastic frontier model to forecast the level of UHC index achievable by all countries 
between 2016 through 2040. Implementing the work of Battese and Coelli,1,2 our SFA model, with a 
production function specification, was such: 

ln(𝑈𝑈𝑈𝑈𝐶𝐶𝑖𝑖,𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽ln(𝑋𝑋𝑖𝑖,𝑡𝑡) − 𝜈𝜈𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡
𝜈𝜈𝑖𝑖,𝑡𝑡 ∼ 𝑁𝑁+(0,𝜎𝜎𝜈𝜈2)
𝜖𝜖𝑖𝑖,𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎𝜖𝜖2)

 

where our observed outcome was the logged UHC index, with our single covariate 𝑋𝑋 being the country-
year specific pooled spending per capita, 𝜖𝜖𝑖𝑖,𝑡𝑡 is the noise component and 𝜈𝜈𝑖𝑖,𝑡𝑡 is the estimated technical 
efficiency that a country would need to achive the optimal, frontier goal. The prior distribution of 
technical efficiency is a half-normal distribution, describing an unbounded distribution between zero and 
very high efficiency. 

 

Forecasting Steps 

We forecasted the UHC index from 2017 through 2040 in the following steps: 

(i) Forecasts of the pooled spending were developed by adding the forecasts of government health 
expenditure (GHE), development assistance for health (DAH) and prepaid private spending (PPP) per 
capita, modeled previously using ensembles.3 

(ii) For each of the error components (efficiency 𝜈𝜈 and noise 𝜖𝜖) for a country, we added them together 
to create a unified residual time series for each country. That series was separately forecasted for 
each country using a weighted ordinary linear regression (using a linear time trend as a covariate), 
where recent time periods were weighed higher than the further past. 

(iii) Using the draws of reference, better and worse scenarios of 𝑋𝑋𝑖𝑖,𝑡𝑡 along with forecasts of the summed 
residuals from (ii), we created reference, better and worse projections of the UHC index from 2017 
through 2040. 

 

408



References  

1 BATTESE GE, COELLI TJ. Frontier Production Functions, Technical Efficiency and Panel Data: With 
Application to Paddy Farmers in India. J Product Anal 1992; 3: 153–69. 

2 Battese GE, Coelli TJ. A model for technical inefficiency effects in a stochastic frontier production 
function for panel data. Empir Econ 1995; 20: 325–32. 

3 Dieleman JL, Sadat N, Chang AY, et al. Trends in future health financing and coverage: future health 
spending and universal health coverage in 188 countries, 2016–40. The Lancet 2018; 391: 1783–98. 

 

 

 

409



Part 4. Online tools and abbreviations  
 
Section 1. Online tools 
 
Further results are presented as dynamic visualizations at [link to be added upon acceptance]. 
 
SDG indicator data sources are made available in an online data citation tool [link to be added upon 
acceptance].  
 
Section 2. List of abbreviations 
 
13th General Program of Work (GPW13) 

ARCs: Annualised rates of change 

GBD: Global Burden of Diseases, Injuries, and Risk Factors Study 

GATHER: Guidelines for Accurate and Transparent Health Estimates Reporting 

HAQ: Healthcare Access and Quality 

IAEG-SDGs: Inter-Agency and Expert Group on Sustainable Development Goal Indicators 

ISCO: International Standard Classification of Occupations 

IQR: Interquartile range 

MDG: Millennium Development Goal 

NCDs: non-communicable diseases 

NTDs: neglected tropical diseases 

SDI: Socio-demographic Index 

SDG: Sustainable Development Goal 

SDSN: Sustainable Development Solutions Network 

SEV: summary exposure value 

UN: United Nations 

UHC: universal health coverage 

UIs: uncertainty intervals 

World Health Assembly (WHA) 

WHO: World Health Organization 

 
Section 3. List of ISO3 codes and location names 
 

AFG Afghanistan 
AGO Angola 
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ALB Albania 
AND Andorra 
ARE United Arab Emirates 
ARG Argentina 
ARM Armenia 
ASM American Samoa 
ATG Antigua and Barbuda 
AUS Australia 
AUT Austria 
AZE Azerbaijan 
BDI Burundi 
BEL Belgium 
BEN Benin 
BFA Burkina Faso 
BGD Bangladesh 
BGR Bulgaria 
BHR Bahrain 
BHS The Bahamas 
BIH Bosnia and Herzegovina 
BLR Belarus 
BLZ Belize 
BMU Bermuda 
BOL Bolivia 
BRA Brazil 
BRB Barbados 
BRN Brunei 
BTN Bhutan 
BWA Botswana 
CAF Central African Republic 
CAN Canada 
CHE Switzerland 
CHL Chile 
CHN China 
CIV Cote d'Ivoire 
CMR Cameroon 
COD Democratic Republic of the Congo 
COG Congo (Brazzaville) 
COL Colombia 
COM Comoros 
CPV Cape Verde 
CRI Costa Rica 
CUB Cuba 
CYP Cyprus 
CZE Czech Republic 
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DEU Germany 
DJI Djibouti 
DMA Dominica 
DNK Denmark 
DOM Dominican Republic 
DZA Algeria 
ECU Ecuador 
EGY Egypt 
ERI Eritrea 
ESP Spain 
EST Estonia 
ETH Ethiopia 
FIN Finland 
FJI Fiji 
FRA France 
FSM Federated States of Micronesia 
GAB Gabon 
GBR United Kingdom 
GEO Georgia 
GHA Ghana 
GIN Guinea 
GMB The Gambia 
GNB Guinea-Bissau 
GNQ Equatorial Guinea 
GRC Greece 
GRD Grenada 
GRL Greenland 
GTM Guatemala 
GUM Guam 
GUY Guyana 
HND Honduras 
HRV Croatia 
HTI Haiti 
HUN Hungary 
IDN Indonesia 
IND India 
IRL Ireland 
IRN Iran 
IRQ Iraq 
ISL Iceland 
ISR Israel 
ITA Italy 
JAM Jamaica 
JOR Jordan 
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JPN Japan 
KAZ Kazakhstan 
KEN Kenya 
KGZ Kyrgyzstan 
KHM Cambodia 
KIR Kiribati 
KOR South Korea 
KWT Kuwait 
LAO Laos 
LBN Lebanon 
LBR Liberia 
LBY Libya 
LCA Saint Lucia 
LKA Sri Lanka 
LSO Lesotho 
LTU Lithuania 
LUX Luxembourg 
LVA Latvia 
MAR Morocco 
MDA Moldova 
MDG Madagascar 
MDV Maldives 
MEX Mexico 
MHL Marshall Islands 
MKD Macedonia 
MLI Mali 
MLT Malta 
MMR Myanmar 
MNE Montenegro 
MNG Mongolia 
MNP Northern Mariana Islands 
MOZ Mozambique 
MRT Mauritania 
MUS Mauritius 
MWI Malawi 
MYS Malaysia 
NAM Namibia 
NER Niger 
NGA Nigeria 
NIC Nicaragua 
NLD Netherlands 
NOR Norway 
NPL Nepal 
NZL New Zealand 
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OMN Oman 
PAK Pakistan 
PAN Panama 
PER Peru 
PHL Philippines 
PNG Papua New Guinea 
POL Poland 
PRI Puerto Rico 
PRK North Korea 
PRT Portugal 
PRY Paraguay 
PSE Palestine 
QAT Qatar 
ROU Romania 
RUS Russia 
RWA Rwanda 
SAU Saudi Arabia 
SDN Sudan 
SEN Senegal 
SGP Singapore 
SLB Solomon Islands 
SLE Sierra Leone 
SLV El Salvador 
SOM Somalia 
SRB Serbia 
SSD South Sudan 
STP Sao Tome and Principe 
SUR Suriname 
SVK Slovakia 
SVN Slovenia 
SWE Sweden 
SWZ Swaziland 
SYC Seychelles 
SYR Syria 
TCD Chad 
TGO Togo 
THA Thailand 
TJK Tajikistan 
TKM Turkmenistan 
TLS Timor-Leste 
TON Tonga 
TTO Trinidad and Tobago 
TUN Tunisia 
TUR Turkey 
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TWN Taiwan (Province of China) 
TZA Tanzania 
UGA Uganda 
UKR Ukraine 
URY Uruguay 
USA United States 
UZB Uzbekistan 
VCT Saint Vincent and the Grenadines 
VEN Venezuela 
VIR Virgin Islands 
VNM Vietnam 
VUT Vanuatu 
WSM Samoa 
YEM Yemen 
ZAF South Africa 
ZMB Zambia 
ZWE Zimbabwe 
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Geography 2017 SDI SDI Quintile
Global 0.652

Central Europe, Eastern Europe, and Central Asia 0.766

Central Asia 0.673

Armenia 0.702 High-middle SDI

Azerbaijan 0.701 High-middle SDI

Georgia 0.7 High-middle SDI

Kazakhstan 0.735 High-middle SDI

Kyrgyzstan 0.607 Low-middle SDI

Mongolia 0.662 Middle SDI

Tajikistan 0.523 Low-middle SDI

Turkmenistan 0.696 Middle SDI

Uzbekistan 0.63 Middle SDI

Central Europe 0.814

Albania 0.685 Middle SDI

Bosnia and Herzegovina 0.713 High-middle SDI

Bulgaria 0.792 High-middle SDI

Croatia 0.825 High SDI

Czech Republic 0.851 High SDI

Hungary 0.817 High-middle SDI

Macedonia 0.754 High-middle SDI

Montenegro 0.788 High-middle SDI

Poland 0.844 High SDI

Romania 0.784 High-middle SDI

Serbia 0.752 High-middle SDI

Slovakia 0.842 High SDI

Slovenia 0.86 High SDI

Eastern Europe 0.785

Belarus 0.773 High-middle SDI

Estonia 0.858 High SDI

Latvia 0.825 High SDI

Lithuania 0.841 High SDI

Moldova 0.676 Middle SDI

Russian Federation 0.792 High-middle SDI

Ukraine 0.74 High-middle SDI

High-income 0.854

Australasia 0.869

Australia 0.873 High SDI

New Zealand 0.842 High SDI

High-income Asia-Pacific 0.869

Brunei 0.856 High SDI

Japan 0.865 High SDI

Aichi 0.875 High SDI

Akita 0.829 High SDI

Aomori 0.825 High SDI

Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values
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Geography 2017 SDI SDI Quintile

Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Chiba 0.859 High SDI

Ehime 0.838 High SDI

Fukui 0.852 High SDI

Fukuoka 0.855 High SDI

Fukushima 0.831 High SDI

Gifu 0.849 High SDI

Gunma 0.851 High SDI

Hiroshima 0.863 High SDI

Hokkaidō 0.842 High SDI

Hyōgo 0.86 High SDI

Ibaraki 0.851 High SDI

Ishikawa 0.856 High SDI

Iwate 0.825 High SDI

Kagawa 0.85 High SDI

Kagoshima 0.83 High SDI

Kanagawa 0.875 High SDI

Kōchi 0.825 High SDI

Kumamoto 0.832 High SDI

Kyōto 0.873 High SDI

Mie 0.854 High SDI

Miyagi 0.85 High SDI

Miyazaki 0.823 High SDI

Nagano 0.851 High SDI

Nagasaki 0.826 High SDI

Nara 0.848 High SDI

Niigata 0.843 High SDI

Ōita 0.846 High SDI

Okayama 0.856 High SDI

Okinawa 0.818 High SDI

Ōsaka 0.872 High SDI

Saga 0.834 High SDI

Saitama 0.852 High SDI

Shiga 0.871 High SDI

Shimane 0.831 High SDI

Shizuoka 0.859 High SDI

Tochigi 0.853 High SDI

Tokushima 0.845 High SDI

Tōkyō 0.924 High SDI

Tottori 0.834 High SDI

Toyama 0.86 High SDI

Wakayama 0.84 High SDI

Yamagata 0.832 High SDI

Yamaguchi 0.849 High SDI

Yamanashi 0.854 High SDI

South Korea 0.872 High SDI
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Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Singapore 0.872 High SDI

High-income North America 0.868

Canada 0.882 High SDI

Greenland 0.76 High-middle SDI

USA 0.867 High SDI

Alabama 0.837 High SDI

Alaska 0.861 High SDI

Arizona 0.845 High SDI

Arkansas 0.826 High SDI

California 0.872 High SDI

Colorado 0.882 High SDI

Connecticut 0.906 High SDI

Delaware 0.874 High SDI

Washington, DC 0.89 High SDI

Florida 0.864 High SDI

Georgia 0.848 High SDI

Hawaii 0.872 High SDI

Idaho 0.841 High SDI

Illinois 0.879 High SDI

Indiana 0.848 High SDI

Iowa 0.87 High SDI

Kansas 0.864 High SDI

Kentucky 0.831 High SDI

Louisiana 0.835 High SDI

Maine 0.872 High SDI

Maryland 0.896 High SDI

Massachusetts 0.913 High SDI

Michigan 0.868 High SDI

Minnesota 0.893 High SDI

Mississippi 0.819 High SDI

Missouri 0.853 High SDI

Montana 0.863 High SDI

Nebraska 0.873 High SDI

Nevada 0.847 High SDI

New Hampshire 0.904 High SDI

New Jersey 0.899 High SDI

New Mexico 0.835 High SDI

New York 0.893 High SDI

North Carolina 0.85 High SDI

North Dakota 0.88 High SDI

Ohio 0.858 High SDI

Oklahoma 0.838 High SDI

Oregon 0.871 High SDI

Pennsylvania 0.879 High SDI

Rhode Island 0.89 High SDI
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Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

South Carolina 0.846 High SDI

South Dakota 0.86 High SDI

Tennessee 0.837 High SDI

Texas 0.838 High SDI

Utah 0.856 High SDI

Vermont 0.896 High SDI

Virginia 0.885 High SDI

Washington 0.884 High SDI

West Virginia 0.825 High SDI

Wisconsin 0.878 High SDI

Wyoming 0.869 High SDI

Southern Latin America 0.72

Argentina 0.71 High-middle SDI

Chile 0.748 High-middle SDI

Uruguay 0.707 High-middle SDI

Western Europe 0.857

Andorra 0.902 High SDI

Austria 0.866 High SDI

Belgium 0.886 High SDI

Cyprus 0.865 High SDI

Denmark 0.918 High SDI

Finland 0.893 High SDI

France 0.865 High SDI

Germany 0.87 High SDI

Greece 0.817 High SDI

Iceland 0.907 High SDI

Ireland 0.882 High SDI

Israel 0.816 High-middle SDI

Italy 0.843 High SDI

Luxembourg 0.916 High SDI

Malta 0.836 High SDI

Netherlands 0.912 High SDI

Norway 0.911 High SDI

Portugal 0.778 High-middle SDI

Spain 0.825 High SDI

Sweden 0.883 High SDI

Stockholm 0.914 High SDI

Sweden except Stockholm 0.873 High SDI

Switzerland 0.889 High SDI

United Kingdom 0.843 High SDI

England 0.849 High SDI

East Midlands 0.83 High SDI

Derby 0.846 High SDI

Derbyshire 0.817 High SDI

Leicester 0.839 High SDI
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Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Leicestershire 0.846 High SDI

Lincolnshire 0.812 High SDI

Northamptonshire 0.829 High SDI

Nottingham 0.863 High SDI

Nottinghamshire 0.814 High SDI

Rutland 0.833 High SDI

East of England 0.84 High SDI

Bedford 0.838 High SDI

Cambridgeshire 0.871 High SDI

Central Bedfordshire 0.834 High SDI

Essex 0.832 High SDI

Hertfordshire 0.87 High SDI

Luton 0.833 High SDI

Norfolk 0.826 High SDI

Peterborough 0.818 High SDI

Southend-on-Sea 0.811 High SDI

Suffolk 0.821 High SDI

Thurrock 0.807 High SDI

Greater London 0.894 High SDI

Barking and Dagenham 0.802 High SDI

Barnet 0.865 High SDI

Bexley 0.826 High SDI

Brent 0.849 High SDI

Bromley 0.848 High SDI

Camden 0.93 High SDI

Croydon 0.833 High SDI

Ealing 0.865 High SDI

Enfield 0.839 High SDI

Greenwich 0.833 High SDI

Hackney 0.887 High SDI

Hammersmith and Fulham 0.927 High SDI

Haringey 0.854 High SDI

Harrow 0.848 High SDI

Havering 0.824 High SDI

Hillingdon 0.882 High SDI

Hounslow 0.879 High SDI

Islington 0.922 High SDI

Kensington and Chelsea 0.932 High SDI

Kingston upon Thames 0.89 High SDI

Lambeth 0.9 High SDI

Lewisham 0.843 High SDI

Merton 0.873 High SDI

Newham 0.838 High SDI

Redbridge 0.831 High SDI

Richmond upon Thames 0.902 High SDI
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Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Southwark 0.912 High SDI

Sutton 0.843 High SDI

Tower Hamlets 0.905 High SDI

Waltham Forest 0.819 High SDI

Wandsworth 0.911 High SDI

Westminster 0.927 High SDI

North East England 0.821 High SDI

County Durham 0.81 High SDI

Darlington 0.825 High SDI

Gateshead 0.826 High SDI

Hartlepool 0.793 High SDI

Middlesbrough 0.808 High SDI

Newcastle upon Tyne 0.872 High SDI

North Tyneside 0.825 High SDI

Northumberland 0.808 High SDI

Redcar and Cleveland 0.79 High SDI

South Tyneside 0.794 High SDI

Stockton-on-Tees 0.823 High SDI

Sunderland 0.815 High SDI

North West England 0.834 High SDI

Blackburn with Darwen 0.802 High SDI

Blackpool 0.781 High SDI

Bolton 0.805 High SDI

Bury 0.815 High SDI

Cheshire East 0.864 High SDI

Cheshire West and Chester 0.855 High SDI

Cumbria 0.828 High SDI

Halton 0.824 High SDI

Knowsley 0.816 High SDI

Lancashire 0.831 High SDI

Liverpool 0.852 High SDI

Manchester 0.885 High SDI

Oldham 0.79 High SDI

Rochdale 0.795 High SDI

Salford 0.838 High SDI

Sefton 0.812 High SDI

St Helens 0.803 High SDI

Stockport 0.843 High SDI

Tameside 0.797 High SDI

Trafford 0.873 High SDI

Warrington 0.86 High SDI

Wigan 0.798 High SDI

Wirral 0.803 High SDI

South East England 0.856 High SDI

Bracknell Forest 0.869 High SDI
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Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Brighton and Hove 0.885 High SDI

Buckinghamshire 0.865 High SDI

East Sussex 0.814 High SDI

Hampshire 0.85 High SDI

Isle of Wight 0.814 High SDI

Kent 0.828 High SDI

Medway 0.809 High SDI

Milton Keynes 0.86 High SDI

Oxfordshire 0.879 High SDI

Portsmouth 0.86 High SDI

Reading 0.895 High SDI

Slough 0.859 High SDI

Southampton 0.858 High SDI

Surrey 0.883 High SDI

West Berkshire 0.872 High SDI

West Sussex 0.843 High SDI

Windsor and Maidenhead 0.889 High SDI

Wokingham 0.885 High SDI

South West England 0.841 High SDI

Bath and North East Somerset 0.875 High SDI

Bournemouth 0.858 High SDI

Bristol, City of 0.884 High SDI

Cornwall 0.817 High SDI

Devon 0.837 High SDI

Dorset 0.825 High SDI

Gloucestershire 0.85 High SDI

North Somerset 0.832 High SDI

Plymouth 0.836 High SDI

Poole 0.842 High SDI

Somerset 0.816 High SDI

South Gloucestershire 0.867 High SDI

Swindon 0.847 High SDI

Torbay 0.79 High SDI

Wiltshire 0.829 High SDI

West Midlands 0.829 High SDI

Birmingham 0.84 High SDI

Coventry 0.848 High SDI

Dudley 0.799 High SDI

Herefordshire, County of 0.828 High SDI

Sandwell 0.797 High SDI

Shropshire 0.832 High SDI

Solihull 0.855 High SDI

Staffordshire 0.826 High SDI

Stoke-on-Trent 0.804 High SDI

Telford and Wrekin 0.822 High SDI
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Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Walsall 0.791 High SDI

Warwickshire 0.857 High SDI

Wolverhampton 0.811 High SDI

Worcestershire 0.833 High SDI

Yorkshire and the Humber 0.83 High SDI

Barnsley 0.787 High SDI

Bradford 0.807 High SDI

Calderdale 0.827 High SDI

Doncaster 0.791 High SDI

East Riding of Yorkshire 0.822 High SDI

Kingston upon Hull, City of 0.813 High SDI

Kirklees 0.816 High SDI

Leeds 0.868 High SDI

North East Lincolnshire 0.804 High SDI

North Lincolnshire 0.811 High SDI

North Yorkshire 0.839 High SDI

Rotherham 0.796 High SDI

Sheffield 0.853 High SDI

Wakefield 0.806 High SDI

York 0.879 High SDI

Northern Ireland 0.835 High SDI

Scotland 0.805 High SDI

Wales 0.806 High SDI

Latin America and Caribbean 0.64

Andean Latin America 0.628

Bolivia 0.587 Low-middle SDI

Ecuador 0.636 Middle SDI

Peru 0.636 Middle SDI

Caribbean 0.638

Antigua and Barbuda 0.715 High-middle SDI

The Bahamas 0.756 High-middle SDI

Barbados 0.739 High-middle SDI

Belize 0.602 Low-middle SDI

Bermuda 0.805 High-middle SDI

Cuba 0.688 Middle SDI

Dominica 0.687 Middle SDI

Dominican Republic 0.593 Low-middle SDI

Grenada 0.64 Middle SDI

Guyana 0.584 Low-middle SDI

Haiti 0.442 Low SDI

Jamaica 0.679 Middle SDI

Puerto Rico 0.813 High-middle SDI

Saint Lucia 0.653 Middle SDI

Saint Vincent and the Grenadines 0.608 Middle SDI

Suriname 0.641 Middle SDI
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Trinidad and Tobago 0.698 Middle SDI

Virgin Islands 0.807 High-middle SDI

Central Latin America 0.623

Colombia 0.634 Middle SDI

Costa Rica 0.662 Middle SDI

El Salvador 0.593 Low-middle SDI

Guatemala 0.524 Low-middle SDI

Honduras 0.512 Low-middle SDI

Mexico 0.628 Middle SDI

Aguascalientes 0.659 Middle SDI

Baja California 0.657 Middle SDI

Baja California Sur 0.659 Middle SDI

Campeche 0.616 Middle SDI

Chiapas 0.533 Middle SDI

Chihuahua 0.639 Middle SDI

Coahuila 0.645 Middle SDI

Colima 0.654 Middle SDI

Mexico City 0.716 Middle SDI

Durango 0.624 Middle SDI

Guanajuato 0.621 Middle SDI

Guerrero 0.562 Middle SDI

Hidalgo 0.587 Middle SDI

Jalisco 0.649 Middle SDI

México 0.635 Middle SDI

Michoacán de Ocampo 0.586 Middle SDI

Morelos 0.635 Middle SDI

Nayarit 0.62 Middle SDI

Nuevo León 0.677 Middle SDI

Oaxaca 0.561 Middle SDI

Puebla 0.584 Middle SDI

Querétaro 0.639 Middle SDI

Quintana Roo 0.626 Middle SDI

San Luis Potosí 0.621 Middle SDI

Sinaloa 0.649 Middle SDI

Sonora 0.65 Middle SDI

Tabasco 0.611 Middle SDI

Tamaulipas 0.647 Middle SDI

Tlaxcala 0.604 Middle SDI

Veracruz de Ignacio de la Llave 0.592 Middle SDI

Yucatán 0.63 Middle SDI

Zacatecas 0.608 Middle SDI

Nicaragua 0.53 Low-middle SDI

Panama 0.677 Middle SDI

Venezuela 0.655 Middle SDI

Tropical Latin America 0.662
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Brazil 0.663 Middle SDI

Acre 0.602 Low-middle SDI

Alagoas 0.556 Low-middle SDI

Amapá 0.659 Middle SDI

Amazonas 0.629 Middle SDI

Bahia 0.591 Low-middle SDI

Ceará 0.6 Low-middle SDI

Distrito Federal 0.792 High-middle SDI

Espírito Santo 0.677 Middle SDI

Goiás 0.65 Middle SDI

Maranhão 0.507 Low-middle SDI

Mato Grosso 0.662 Middle SDI

Mato Grosso do Sul 0.65 Middle SDI

Minas Gerais 0.661 Middle SDI

Pará 0.579 Low-middle SDI

Paraíba 0.574 Low-middle SDI

Paraná 0.682 Middle SDI

Pernambuco 0.594 Low-middle SDI

Piauí 0.552 Low-middle SDI

Rio de Janeiro 0.709 High-middle SDI

Rio Grande do Norte 0.605 Low-middle SDI

Rio Grande do Sul 0.693 Middle SDI

Rondônia 0.622 Middle SDI

Roraima 0.646 Middle SDI

Santa Catarina 0.702 High-middle SDI

São Paulo 0.72 High-middle SDI

Sergipe 0.616 Middle SDI

Tocantins 0.611 Middle SDI

Paraguay 0.619 Middle SDI

North Africa and Middle East 0.639

North Africa and Middle East 0.639

Afghanistan 0.29 Low SDI

Algeria 0.696 Middle SDI

Bahrain 0.712 High-middle SDI

Egypt 0.604 Low-middle SDI

Iran 0.7 High-middle SDI

Iraq 0.585 Low-middle SDI

Jordan 0.697 Middle SDI

Kuwait 0.786 High-middle SDI

Lebanon 0.73 High-middle SDI

Libya 0.761 High-middle SDI

Morocco 0.579 Low-middle SDI

Palestine 0.541 Low-middle SDI

Oman 0.744 High-middle SDI

Qatar 0.766 High-middle SDI
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Saudi Arabia 0.779 High-middle SDI

Sudan 0.478 Low-middle SDI

Syria 0.611 Middle SDI

Tunisia 0.675 Middle SDI

Turkey 0.729 High-middle SDI

United Arab Emirates 0.795 High-middle SDI

Yemen 0.43 Low SDI

South Asia 0.534

South Asia 0.534

Bangladesh 0.458 Low SDI

Bhutan 0.57 Low-middle SDI

India 0.55 Low-middle SDI

Andhra Pradesh 0.536 Low-middle SDI

Arunachal Pradesh 0.556 Low-middle SDI

Assam 0.53 Low-middle SDI

Bihar 0.433 Low SDI

Chhattisgarh 0.512 Low-middle SDI

Delhi 0.715 High-middle SDI

Goa 0.74 High-middle SDI

Gujarat 0.584 Low-middle SDI

Haryana 0.6 Low-middle SDI

Himachal Pradesh 0.633 Middle SDI

Jammu and Kashmir 0.59 Low-middle SDI

Jharkhand 0.487 Low-middle SDI

Karnataka 0.574 Low-middle SDI

Kerala 0.659 Middle SDI

Madhya Pradesh 0.487 Low-middle SDI

Maharashtra 0.618 Middle SDI

Manipur 0.59 Low-middle SDI

Meghalaya 0.565 Low-middle SDI

Mizoram 0.616 Middle SDI

Nagaland 0.633 Middle SDI

Odisha 0.524 Low-middle SDI

Punjab 0.622 Middle SDI

Rajasthan 0.492 Low-middle SDI

Sikkim 0.628 Middle SDI

Tamil Nadu 0.615 Middle SDI

Telangana 0.575 Low-middle SDI

Tripura 0.543 Low-middle SDI

Uttar Pradesh 0.488 Low-middle SDI

Uttarakhand 0.607 Middle SDI

West Bengal 0.538 Low-middle SDI

Union Territories other than Delhi 0.653 Middle SDI

Nepal 0.429 Low SDI

Pakistan 0.492 Low-middle SDI
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Southeast Asia, East Asia, and Oceania 0.685

East Asia 0.709

China 0.707 High-middle SDI

North Korea 0.538 Low-middle SDI

Taiwan (Province of China) 0.864 High SDI

Oceania 0.471

American Samoa 0.702 High-middle SDI

Federated States of Micronesia 0.575 Low-middle SDI

Fiji 0.641 Middle SDI

Guam 0.794 High-middle SDI

Kiribati 0.427 Low SDI

Marshall Islands 0.55 Low-middle SDI

Northern Mariana Islands 0.758 High-middle SDI

Papua New Guinea 0.419 Low SDI

Samoa 0.576 Low-middle SDI

Solomon Islands 0.425 Low SDI

Tonga 0.625 Middle SDI

Vanuatu 0.475 Low-middle SDI

Southeast Asia 0.641

Cambodia 0.482 Low-middle SDI

Indonesia 0.648 Middle SDI

Laos 0.519 Low-middle SDI

Malaysia 0.759 High-middle SDI

Maldives 0.655 Middle SDI

Mauritius 0.72 High-middle SDI

Myanmar 0.556 Low-middle SDI

Philippines 0.617 Middle SDI

Sri Lanka 0.68 Middle SDI

Seychelles 0.692 Middle SDI

Thailand 0.684 Middle SDI

Timor-Leste 0.505 Low-middle SDI

Vietnam 0.607 Middle SDI

Sub-Saharan Africa 0.446

Central sub-Saharan Africa 0.457

Angola 0.461 Low-middle SDI

Central African Republic 0.334 Low SDI

Congo (Brazzaville) 0.574 Low-middle SDI

DR Congo 0.364 Low SDI

Equatorial Guinea 0.625 Middle SDI

Gabon 0.651 Middle SDI

Eastern sub-Saharan Africa 0.387

Burundi 0.31 Low SDI

Comoros 0.434 Low SDI

Djibouti 0.485 Low-middle SDI

Eritrea 0.409 Low SDI
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Ethiopia 0.334 Low SDI

Kenya 0.499 Low-middle SDI

Baringo 0.444 Low-middle SDI

Bomet 0.496 Low-middle SDI

Bungoma 0.463 Low-middle SDI

Busia 0.438 Low-middle SDI

Elgeyo Marakwet 0.496 Low-middle SDI

Embu 0.533 Low-middle SDI

Garissa 0.334 Low-middle SDI

Homa Bay 0.425 Low-middle SDI

Isiolo 0.385 Low-middle SDI

Kajiado 0.534 Low-middle SDI

Kakamega 0.45 Low-middle SDI

Kericho 0.5 Low-middle SDI

Kiambu 0.58 Low-middle SDI

Kilifi 0.456 Low-middle SDI

Kirinyaga 0.533 Low-middle SDI

Kisii 0.522 Low-middle SDI

Kisumu 0.503 Low-middle SDI

Kitui 0.461 Low-middle SDI

Kwale 0.457 Low-middle SDI

Laikipia 0.556 Low-middle SDI

Lamu 0.453 Low-middle SDI

Machakos 0.518 Low-middle SDI

Makueni 0.469 Low-middle SDI

Mandera 0.295 Low-middle SDI

Marsabit 0.34 Low-middle SDI

Meru 0.508 Low-middle SDI

Migori 0.419 Low-middle SDI

Mombasa 0.568 Low-middle SDI

Murang’a 0.528 Low-middle SDI

Nairobi 0.674 Low-middle SDI

Nakuru 0.545 Low-middle SDI

Nandi 0.501 Low-middle SDI

Narok 0.402 Low-middle SDI

Nyamira 0.544 Low-middle SDI

Nyandarua 0.534 Low-middle SDI

Nyeri 0.554 Low-middle SDI

Samburu 0.308 Low-middle SDI

Siaya 0.46 Low-middle SDI

Taita Taveta 0.529 Low-middle SDI

Tana River 0.379 Low-middle SDI

Tharaka Nithi 0.528 Low-middle SDI

Trans Nzoia 0.496 Low-middle SDI

Turkana 0.295 Low-middle SDI

428



Geography 2017 SDI SDI Quintile

Appendix Table. Socio-demographic Index groupings by geography, based on 2017 values

Uasin Gishu 0.545 Low-middle SDI

Vihiga 0.477 Low-middle SDI

Wajir 0.243 Low-middle SDI

West Pokot 0.382 Low-middle SDI

Madagascar 0.331 Low SDI

Malawi 0.349 Low SDI

Mozambique 0.34 Low SDI

Rwanda 0.407 Low SDI

Somalia 0.235 Low SDI

South Sudan 0.275 Low SDI

Tanzania 0.412 Low SDI

Uganda 0.388 Low SDI

Zambia 0.472 Low-middle SDI

Southern sub-Saharan Africa 0.64

Botswana 0.663 Middle SDI

Lesotho 0.493 Low-middle SDI

Namibia 0.616 Middle SDI

South Africa 0.677 Middle SDI

Swaziland 0.578 Low-middle SDI

Zimbabwe 0.463 Low-middle SDI

Western sub-Saharan Africa 0.441

Benin 0.373 Low SDI

Burkina Faso 0.284 Low SDI

Cameroon 0.482 Low-middle SDI

Cape Verde 0.549 Low-middle SDI

Chad 0.253 Low SDI

Cote d'Ivoire 0.412 Low SDI

The Gambia 0.405 Low SDI

Ghana 0.537 Low-middle SDI

Guinea 0.325 Low SDI

Guinea-Bissau 0.349 Low SDI

Liberia 0.328 Low SDI

Mali 0.267 Low SDI

Mauritania 0.471 Low-middle SDI

Niger 0.191 Low SDI

Nigeria 0.493 Low-middle SDI

Sao Tome and Principe 0.488 Low-middle SDI

Senegal 0.373 Low SDI

Sierra Leone 0.357 Low SDI

Togo 0.413 Low SDI
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